

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2013 الموضوع

RS46

4	مدة الإنجاز	علوم المهندس	المادة
8	المعامل	شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية	الشعب(ة) أو المسلك

ETUDE D'UN SYSTEME DE CONDITIONNEMENT ET D'EMBALLAGE DE BRIOCHES

- Le sujet comporte 3 types de documents :
- Pages 01 à 07: socle du sujet comportant les situations d'évaluation (SEV) (Couleur JAUNE) ;
- Pages **08** à **10**: Documents ressources portant la mention

(Couleur **ROSE**);

■ Pages 11 à 19: Documents réponses portant la mention

(Couleur **BLANCHE**)

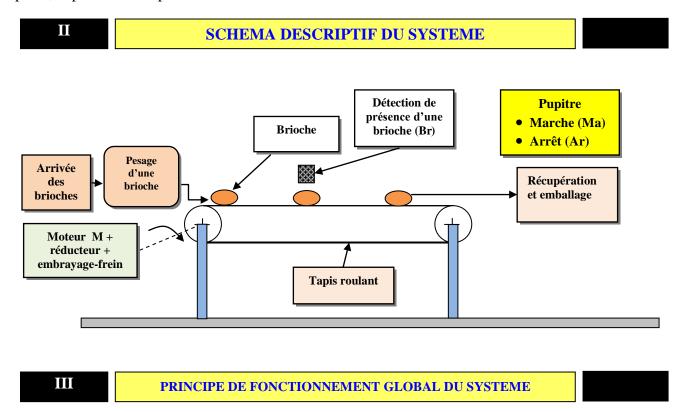
Le sujet comporte 4 situations d'évaluation (SEV) :

SEV1: Analyse fonctionnelle : / 05 points SEV2 : Analyse énergétique : / 26 points **SEV3**: Analyse informationnelle SEV4 : Etude de transmission de mouvement : / 18 points

Toutes les réponses doivent être rédigées sur les documents réponses "DREP".

- * Les pages portant en haut la mention ''DREP'' (Couleur BLANCHE) doivent être obligatoirement jointes à la copie du candidat même si elles ne comportent aucune réponse.
- Le sujet est noté sur 80 points.
- Aucun document n'est autorisé.
- Sont autorisées les calculatrices de poche y compris celles programmables.

RS46

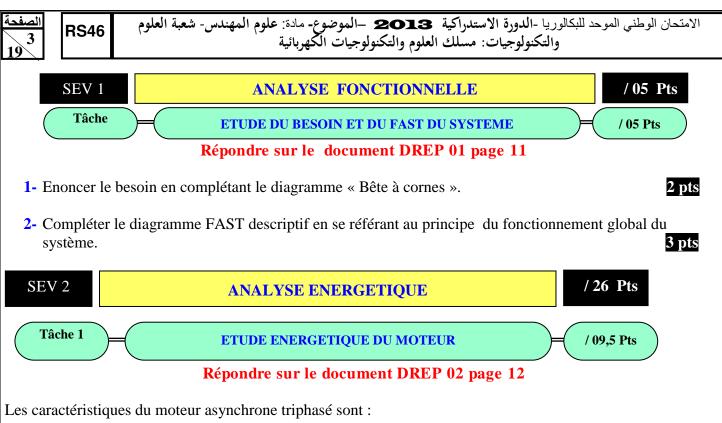

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية على الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

Ι

MISE EN SITUATION

Une petite entreprise est spécialisée dans la fabrication de pâtisserie : galettes, croissants et brioches. Ces dernières sont conditionnées et emballées pour être distribuées dans les supermarchés.

Pour une bonne gestion de la production des brioches, l'entreprise a besoin d'un système qui permet de peser, déplacer et compter les brioches.



Le tapis roulant est entraîné par un moteur asynchrone triphasé associé à un réducteur assisté par un embrayage frein ; ce dernier est commandé par un électroaimant.

Le fonctionnement du système est résumé dans ce qui suit :

- Le système est piloté par une carte à base de microcontrôleur (μC) de type PIC 16F84 (DRES 01 : page 08). Ce dernier contrôle :
 - La mise en marche et l'arrêt du moteur M via respectivement deux boutons poussoirs Ma et Ar ;
 - Le comptage du nombre de brioches pour des fins d'emballage, via un capteur photoélectrique Br. A chaque paquet de 12 brioches, le tapis roulant s'arrête, alors que le moteur continue à tourner à vide ; un opérateur emballe les 12 brioches et relance le tapis, via un bouton poussoir, non représenté, pour un nouveau emballage.
- Le pesage préalable de brioches, permettant le contrôle de la validité de brioches suivant des conditions préétablies, est délégué à une carte analogique.

- $P_N = 0.75 \text{ kW}$;
- $N_N = 1400 \text{ tr/min}$;
- $\eta = 0.7$;
- $\cos \varphi = 0.77$;
- Nombre de pôles : 4;
- f = 50 Hz.

Le moteur est alimenté sous une tension composée $U=400\ V$ - $50\ Hz$ et chaque enroulement statorique est conçu pour être soumis à une tension de $230\ V$ en fonctionnement nominal.

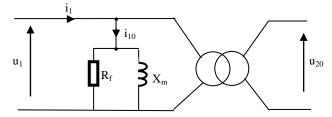
1- Quel est le couplage des enroulements statoriques ?	1 pt
2- Quelle est la vitesse de synchronisme N _S (tr/min) ?	1 pt
3- Donner (en %) la valeur du glissement g.	1 pt
4- Calculer la valeur de la puissance active P _a absorbée par le moteur.	1 pt
5- Quelle est la valeur du courant I _N absorbé par le moteur ?	1,5 pt
6- Quelle est la valeur de l'ensemble des pertes p _t dissipées dans le moteur ?	1 pt
7- Déterminer la puissance réactive Q _a absorbée du moteur.	1,5 pt
8- Calculer alors la puissance apparente S.	1,5 pt

Répondre sur le document DREP 02 page 12

Le schéma du circuit de puissance du moteur représenté sur le document **DREP 02 page 12** illustre un démarrage direct à un seul sens de marche.

A partir de ce schéma, compléter le tableau n°1.

4,5 pts



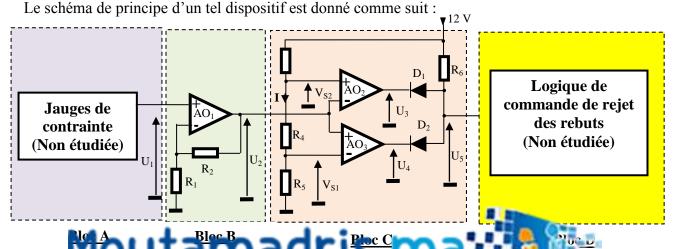
Répondre sur le document DREP 03 page 13

Pour adapter la tension d'alimentation du réseau au circuit de commande, on utilise un transformateur dont les caractéristiques sont :

Le nombre de spires du primaire est $N_1 = 345$ et la section utile du circuit magnétique est S = 25 cm².

- Essai à vide : $U_1 = 230 \text{ V}$; $U_{20} = 24.9 \text{ V}$; $I_{10} = 0.55 \text{ A}$ et $P_{10} = 28.2 \text{ W}$.
- Essai en court-circuit : $U_{1CC} = 10 \text{ V}$; $I_{2CC} = 25,3 \text{ A et } P_{1CC} = 26,6 \text{ W}$.
- 1- Calculer la valeur du champ magnétique maximale B_{max} (on rappelle que : U = 4,44. B_{max} .f.N.S). 1 pt
- 2- Calculer le rapport de transformation \mathbf{m} et en déduire le nombre de spires N_2 du secondaire.
- **3-** Quelle est la valeur du facteur de puissance cos φ_{10} à vide ?
- 4- Le schéma équivalent au transformateur à vide est le suivant (pertes joule négligeables):

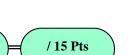
- **4.1** Quelle est la valeur de la résistance R_f ?
- **4.2-** Calculer la réactance magnétisante X_m.
- 5- Donner la valeur du courant nominal I_{2N} dans le secondaire.
- 6- Sous la tension $U_{2N} = 24 \text{ V}$, calculer la valeur du rendement η lorsque le transformateur débite le


1 pt

courant nominal I_{2N} dans une charge inductive de facteur de puissance cos $\varphi_2 = 0.6$. 2,5 pts

Le dispositif de pesage informe sur la masse **M** d'une brioche :

- Si la masse M est égale à $100 \text{ g} \pm 10\%$, la brioche est placée directement sur le tapis roulant ;
- Sinon, elle est rejetée dans un panier prévu pour les rebuts qui vont être recyclés.



الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية علام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

- Les amplificateurs opérationnels AO₁ à AO₃ sont supposés parfaits et sont alimentés entre V_{CC}=12 V et 0 V.
- Les diodes D₁ à D₃ sont supposées idéales.

Le bloc " Jauges de contrainte " délivre une tension U_1 proportionnelle à la masse $M:U_1=k.M$ (k:sensibilité, k=5 mV/g).

- 1- Déterminer les masses minimale (\mathbf{M}_{min}) et maximale (\mathbf{M}_{max}) pour une brioche non rejetée ; en déduire les valeurs correspondantes U_{1min} et U_{1max} de la tension U_{1} .
- **2-** L'amplificateur AO₁ fonctionne en régime linéaire.
 - **2.1** Donner le nom du montage réalisé autour de cet amplificateur.
 - **2.2-** Sachant que $R_2=10.R_1$, donner l'expression de U_2 en fonction de U_1 .
 - **2.3** En déduire alors U_2 en fonction de la masse M.
 - **2.4-** Déterminer l'intervalle $[U_{2min}, U_{2max}]$ de la tension U_2 qui correspond à la brioche acceptée. **1** pt
- 3- Les amplificateurs opérationnels AO_2 et AO_3 fonctionnent en commutation et les tensions de seuil V_{S1} et V_{S2} sont respectivement égale à 4,95 V et 6,05 V.
 - 3.1- Sachant que R_4 = 1 K Ω , calculer la valeur du courant I et en déduire les valeurs des résistances R_3 , et R_5 .
 - **3.2-** Tracer le graphe U_3 en fonction de U_2 .
 - **3.3-** Tracer le graphe U_4 en fonction de U_2 .
 - **3.4-** Tracer à partir des deux graphes précédents le graphe U_5 en fonction de U_2 .
 - **3.5-** Quelle est la fonction logique réalisée par l'ensemble $\{D_1, D_2, R_6\}$?
 - **3.6-** Décrire brièvement la fonction réalisée par le bloc C.

ETUDE DU PROGRAMME DE CONTROLE

Répondre sur le document DREP 06 page :16

Le schéma de commande est donné au DRES 01 de la page 08. Le moteur asynchrone triphasé M est commandé par le contacteur KM à travers le relais KA correspondant à la sortie RA0 du μ C PIC16F84. Le bouton Ma, relié à l'entrée RB1 du μ C, permet de mettre en marche le moteur M et le bouton Ar, relié à l'entrée RB2 du μ C, permet de l'arrêter. La commande du moteur obéit à l'équation suivante :

$$KA = (KA + Ma).\overline{Ar}$$

L'opération de comptage de brioches est déclenchée à chaque front montant du signal logique fourni par le capteur photoélectrique Br, relié à l'entrée RB0 du µC fonctionnant en mode interruptible. A chaque fois qu'on a traité un paquet de 12 brioches, on arrête le tapis, permettant ainsi à un opérateur d'emballer le paquet.

On note que:

Tâche 2

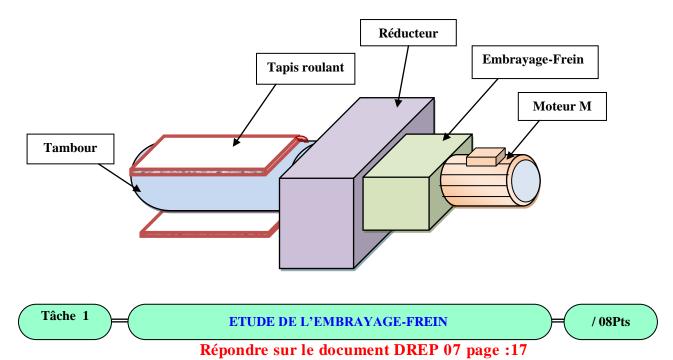
- Le programme principal consiste à commander le moteur M, conformément à l'équation ci-dessus.
- Le sous-programme d'interruption consiste à décrémenter une case-mémoire intitulée « Compteur_Brioches », initialisée à 12, qui est le nombre de brioches par paquet.
- « Etat_Ma » est une case-mémoire contenant l'état de l'entrée Ma (marche du moteur M) ;

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية علام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

- « Etat_Ar » est une case-mémoire contenant l'état de l'entrée Ar (Arrêt du moteur M);
- « Etat Mot » une case-mémoire contenant l'état de la sortie RA0 commandant le moteur M.

Compléter le programme correspondant.

15 pts


Le jeu d'instructions du µC est donné au DRES 02 de la page 09.

SEV 4

ETUDE DE LA TRANSMISSION DE MOUVEMENT

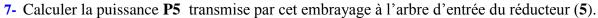
/18Pts

Le tapis roulant est entraîné par un motoréducteur assisté par un embrayage-frein qui commande la transmission de mouvement.

(Voir document ressource DRES 3 page 10) La position de l'armature (6) (à droite ou à gauche) en fonction de l'état (excité ou désexcité) de

l'électro-aimant (2), nous donne les deux positions possibles du système : Embrayée ou Freinée.

On suppose que la transmission de mouvement est réalisée sans glissement. On donne :


- Le coefficient de frottement est $\mathbf{f} = 0.4$;
- L'effort presseur des ressorts (7) est $\mathbf{F_r} = 30 \,\mathrm{N}$;
- L'effort d'attraction magnétique créé par l'électro-aimant (2) est $\mathbf{F}_{att} = 120 \,\mathrm{N}$;
- Les rayons des garnitures (3) sont $\mathbf{R} = 80 \text{ mm}$ et $\mathbf{r} = 60 \text{ mm}$;
- Vitesse de rotation du moteur Nm = 1400 tr/min.
- 1- Donner le nom de l'embrayage étudié.
- 2- Sur le dessin, le système est-il dessiné en position embrayée ou freinée ? Justifier votre réponse. 0.5 pt
- 3- Citer trois principales caractéristiques que doivent posséder les garnitures.
- 4- Compléter le schéma cinématique.

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية علا العلوم الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

- 5- Calculer l'effort presseur de l'embrayage $\mathbf{F}_{\mathbf{p}}$
- 6- En déduire le couple transmissible Ct.



Répondre sur le document DREP 08 page : 18

Le réducteur, associé au moteur est constitué par deux couples d'engrenages cylindriques à denture droite (17 , 16) et (14 , 15). Les axes de l'arbre moteur et celui de l'arbre du tambour (13) sont sur le même prolongement.

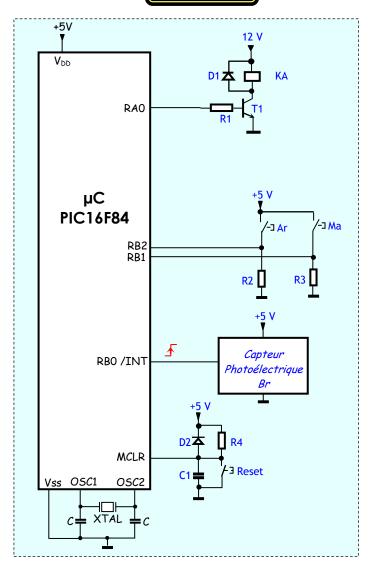
On désire déterminer quelques caractéristiques de ce réducteur.

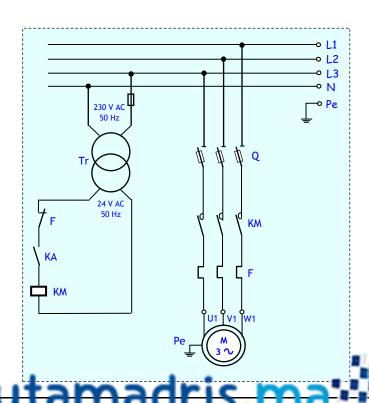
- 1- Compléter sur le tableau des caractéristiques des engrenages. Justifier les résultats trouvés. 2.5pts
- 2- Le moteur tourne à une vitesse $N_m = 1400$ tr/min, calculer la vitesse de rotation du tambour (13). 1 pt
- 3- Comparer le sens de rotation du tambour (13) à celui de l'arbre moteur? Justifier votre réponse. 0.5 pt

- 1- On vous demande de concevoir la liaison encastrement entre la couronne (15) et l'arbre du tambour (13) en utilisant :
 - Une clavette parallèle.
 - Une rondelle Grower.
 - Un écrou Hexagonal.

2 pts 2 pts

2 pts


(Nota : les dimensions des éléments cités ci-dessus sont laissées à l'initiative du candidat)



RS46

الامنحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالعام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

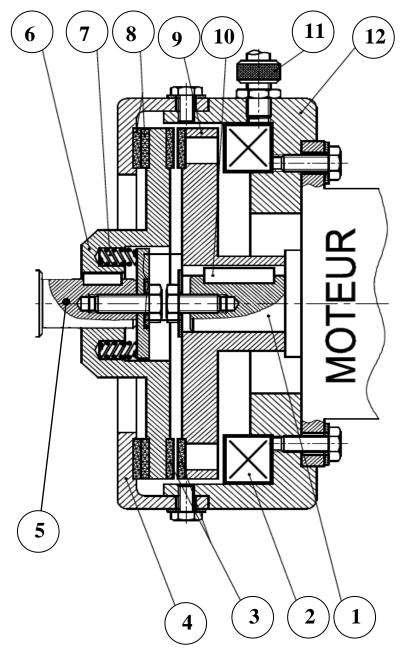
DRES 01

DRES 02

Résumé des instructions PIC 16F84

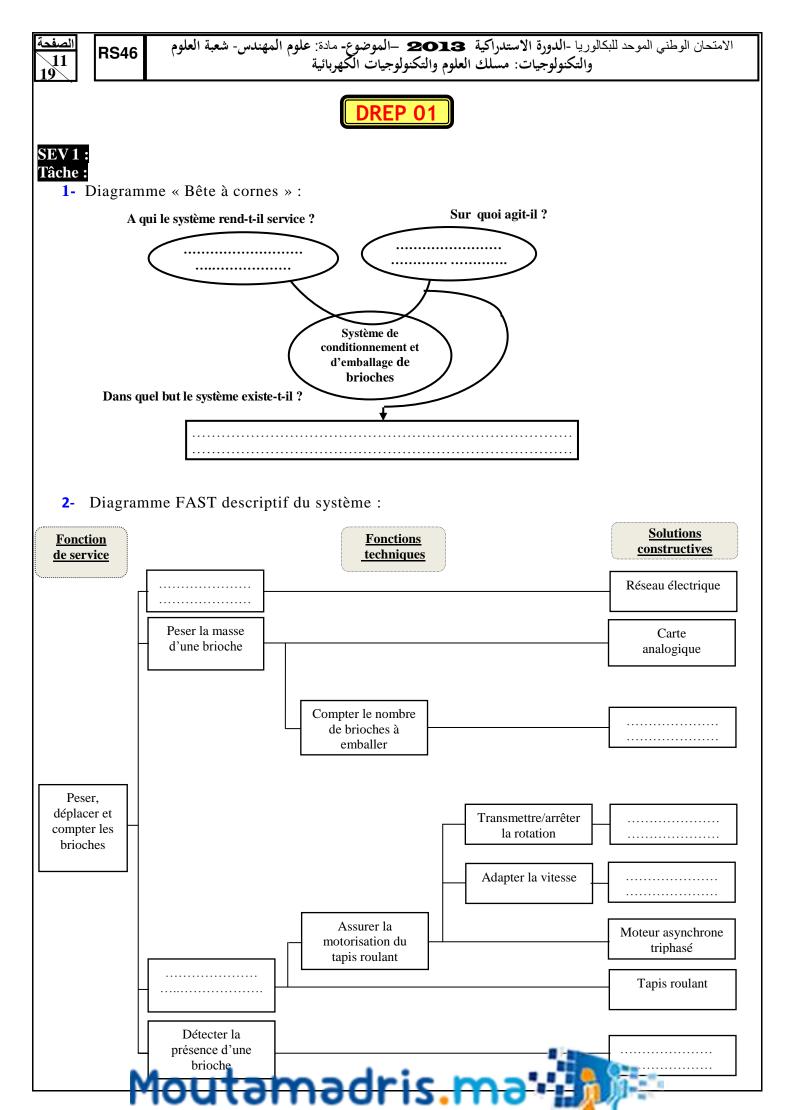
IN	STRU	CTIONS OPERANT SUR REGISTRE (direct)	indicateurs	Cycles
ADDWF	F,d	$W+F \rightarrow \{W,F?d\}$	C,DC,Z	1
ANDWF	F,d	W and $F \rightarrow \{W, F? d\}$	Z	1
CLRF	F	Clear F	Z	1
CLRW		Clear W	Z	1
CLRWDT		Clear Watchdoc timer	TO', PD'	1
COMF	F,d	Complémente F → {W,F ? d}	Z	1
DECF	F,d	décrémente F → {W,F ? d}	Z	1
DECFSZ	F,d	décrémente $F \rightarrow \{W,F?d\}$ skip if 0		1(2)
INCF	F,d	incrémente $F \rightarrow \{W,F?d\}$	Z	1
INCFSZ	F,d	incrémente $F \rightarrow \{W,F?d\}$ skip if 0	S .	1(2)
IORWF	F,d	W or $F \rightarrow \{W, F? d\}$	Z	1
MOVF	F,d	F → {W,F?d}	Z	1
MOVWF	F	$W \rightarrow F$		1
RLF	F,d	rotation à gauche de F a travers $C \rightarrow \{W,F?d\}$	С	1
RRF	F,d	rotation à droite de F a travers C → {W,F?d}	24	1
SUBWF	F,d	$F-W \rightarrow \{W,F?d\}$	C,DC,Z	1
SWAPF	F,d	permute les 2 quartets de F → {W,F ? d}		1
XORWF	F,d	$W \text{ xor } F \to \{W,F?d\}$	Z	1
INSTRUC	TIONS	S OPERANT SUR BIT	Ť	35
BCF	F,b	RAZ du bit b du registre F		1
BSF	F,b	RAU du bit b du registre F		1
DTECC	E Is	tests is bit bids Cipi O souts una instruction	0.7	1/21

RCF	F,D	RAZ du bit b du registre F	
BSF	F,b	RAU du bit b du registre F	1
BTFSC	F,b	teste le bit b de F, si 0 saute une instruction	1(2)
BTFSS	F,b	teste le bit b de F, si 1 saute une instruction	1(2)


INSTRUC	TION	IS OPERANT SUR DONNEE (Immediat)		
ADDLW	K	$W + K \rightarrow W$	C,DC,Z	1
ANDLW	K	W and K \rightarrow W	Z	1
IORLW	K	W or K → W	Z	1
MOVLW	K	$K \rightarrow W$		1
SUBLW	K	$K - W \rightarrow W$	C,DC,Z	1
XORLW	K	W xor K → W	Z	1

INSTRUCTIONS GENERALES				
CALL	L	Branchement à un sous programme de label L		2
GOTO	L	branchement à la ligne de label L		2
NOP No operation			1	
RETURN retourne d'un sous programme			2	
RETFIE Retour d'interruption			2	
RETLW K retourne d'un sous programme avec K dans W			2	
SLEEP se met en mode standby TO', PD'		TO', PD'	1	

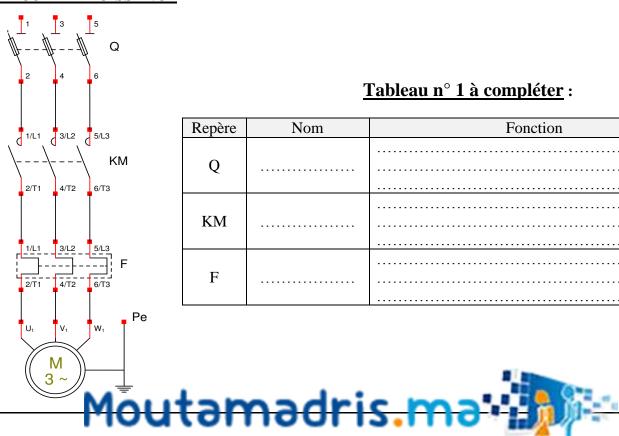
الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية 13 كاك الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية


DRES 03

8	Garnitures	
7	Ressort	
6	Armature mobile	
5	Arbre réducteur	
4	Plateau fixe	
3	Garnitures	
2	Electro-aimant	
1	Arbre moteur	
Rep.	Désignation	

17		
16		
12	Bâtie	
11	11 Douille raccord	
10 Clavette		
9	Plateau moteur	
Rep. Désignation		

الصفحة
12
19


الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالعلام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 02

SEV 2	:	
Tâche	1	Ī

ache	
1-	Couplage :
	Vitesse de synchronisme N _S :
3-	Valeur du glissement g :
4-	Puissance active P _a absorbée par le moteur :
	-
5-	Valeur du courant I _N absorbé par le moteur :
6-	Ensemble des pertes p_t dissipées dans le moteur :
7-	Puissance réactive Q _a absorbée par le moteur :
8-	Puissance apparente S :

Tâche 2 : CIRCUIT DE PUISSANCE

Tableau n° 1 à compléter :

Repère	Nom	Fonction
Q		
KM		
F		

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالعام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 03

Tâche 3:

1-	Valeur du champ magnétique maximale B _{max} :
2-	Rapport de transformation ${\bf m}$ et nombre de spires ${\bf N}_2$ du secondaire :
3-	Facteur de puissance $\cos \phi_{10}$ à vide :
4-	4.1- Valeur de la résistance R _f :
	4.2- Réactance magnétisante X_m :
5-	Valeur du courant nominal I_{2N} débité par le secondaire :
6-	Valeur du rendement η:

الصفحة
14
19

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالعلام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 04

SEV 3	:	
Tâche	1	

iche 1-	Masses et tensions correspondantes :				
2-	2.1- Nom du montage à AO_1 :				
	2.2- Tension U_2 en fonction de U_1 :				
	2.3- Tension U_2 en fonction de la masse M :				
	2.4- Intervalle $[U_{2min}$; $U_{2max}]$ de la tension U_2 qui correspond à la brioche acceptée :				
3-	3.1- Calcul des valeurs de I, R ₃ et R ₅ :				
	3.2- U ₃ (V)				
	$0 \qquad \qquad \bullet $				
	12				
	0 4,95 $U_2(V)$ 3.4- 12 $U_3(V)$				
	$U_2(V)$				

Moutamadris.ma'':

الصفحة
15
19

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالعام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 05

3.5-	Fonction logique réalisée par l'ensemble { D_1 , D_2 , R_6 } :
3.6-	Fonction réalisée par le bloc C :

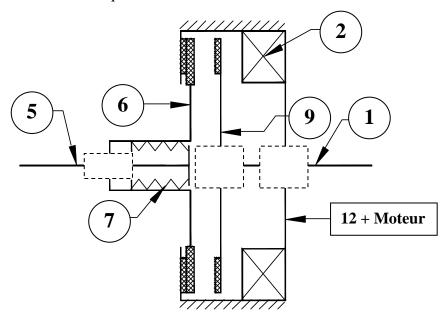
RS46

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالعلام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 06

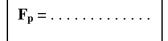
;	Programn	ne de contrôle du système	;
,	ORG GOTO		; Adresse de départ après Reset
;		umme d'interruption RBO	:
;			
	ORG 0x00	CON, GIE	; Adresse du sous-programme d'interruption
		CON, GIE CON, INTF	; Inhiber toutes les interruptions ; Inhiber <i>l'</i> interruption RB0
;Sauvegarde de		CON, INT	, fillifoet i interruption KBo
	; Non étudiée		
;Décrémentatio			
	COTO	Compteur_Brioches	
	GOTO Commande d	Restaur_Reg <i>e l'électroaimant de l'embraye</i>	ave frein non étudiée
	MOVLW	12	; Prépar <i>ation d'</i> un nouveau paquet de 12 brioches
	MOVWF	Compteur_Brioche	
;Restauration d	les registres	. –	
Restaur_Reg	; Non étudiée		
	•••••		; Retour d'interruption
; :		ramme principal	 :
;			
Init		STATUS, RP0	; Bank 1
	CLRF	TRISA	; PORTA en sortie
	•••••	•••••	
		10	; PORTB en entrée
	MOVLW	12	; Initialisation du compteur de brioches à 12
	MOVWF	Compteur_Brioche	
	MOVLW	0x90	; Validation de l'interruption RB0
	MOVWF MOVLW	INTCON 0xC0	Conformation de l'intermention PRO aux front A
	MOVEW	OPTION_REG	; Configuration de l'interruption RB0 sur front \uparrow
	BCF	STATUS, RP0	; Bank 0
;Lecture de l'ét		•	, Bunk o
Start	BTFSC	PORTB, 1	; Lecture de RB1 (Ma) et stockage de son état dans
	BSF	Etat_Ma, 0	; le bit 0 d'une case-mémoire Etat_Ma
	BTFSS	PORTB, 1	
	BCF	Etat_Ma, 0	
	•••••	•••••	; Lecture de RB2 (Ar) et stockage de son état dans
	•••••	•••••	; le bit d'une case-mémoire Etat_Ar
	•••••	•••••	
	•••••	•••••	· Complémentation de Ar
;Evaluation de	l'équation de la	commande du moteur M [KA=	; Complémentation de Ar = (KA OU Ma) ET (NON Ar)]
,		Etat_Mot, W	; Lecture de l'ancien état du moteur M
	IORWF	<i>-</i>	; Détermination du nouvel état de M
		••••	
	•••••	•••••	
;Rafraîchissem	ent de la sortie R MOVF	A0 commandant le moteur M- Etat_Mot, W	
	,		; Activation de la sortie RA0 commandant le moteur M
	•••••	Start	; Retour au début
	END		

حة	ىق	الص
10	1'	7


الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالعلام الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 07

SEV 4 : Tâche 1 :


1-	Nom de l'embrayage étudié.
2-	Sur le dessin, le système est-il dessiné en position embrayée ou freinée ? justifier votre réponse.
3-	Citer trois principales caractéristiques que doivent posséder les garnitures.

4- Compléter le schéma cinématique

5-	Effort presseur de l'embrayage $\mathbf{F}_{\mathbf{p}}$;

6- Couple transmissible C_t ;

7- Puissance **P**₅

لصفحة	١
18	

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كلا الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

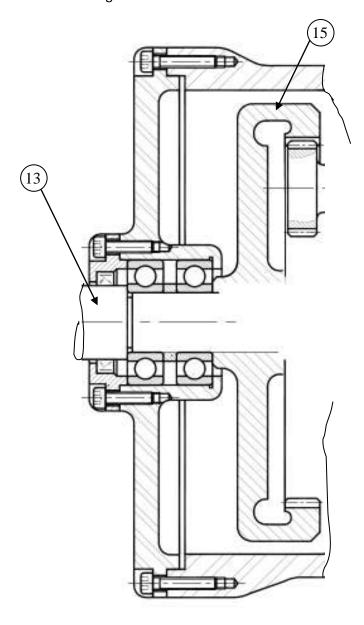
DREP 08

Tâche 2 :

1- Tableau des caractéristiques des engrenages.

	Pignon (17)	Roue dentée (16)	Pignon arbré (14)	Couronne (15)
d				1200 mm
a				
r	$R_{17,16} = 1/8$		r _{14,15} =	= 1/16

Justification des	résultats :				
Vitesse de rotation	on du tambour (13).				
		$N_{13} = \dots$			
Comparer le sens votre réponse.	s de rotation du tambour (1	13) à celui de l'arbre moteur (mettre une croix) ; Justifier			


الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية 13 كاك الموضوع- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 09

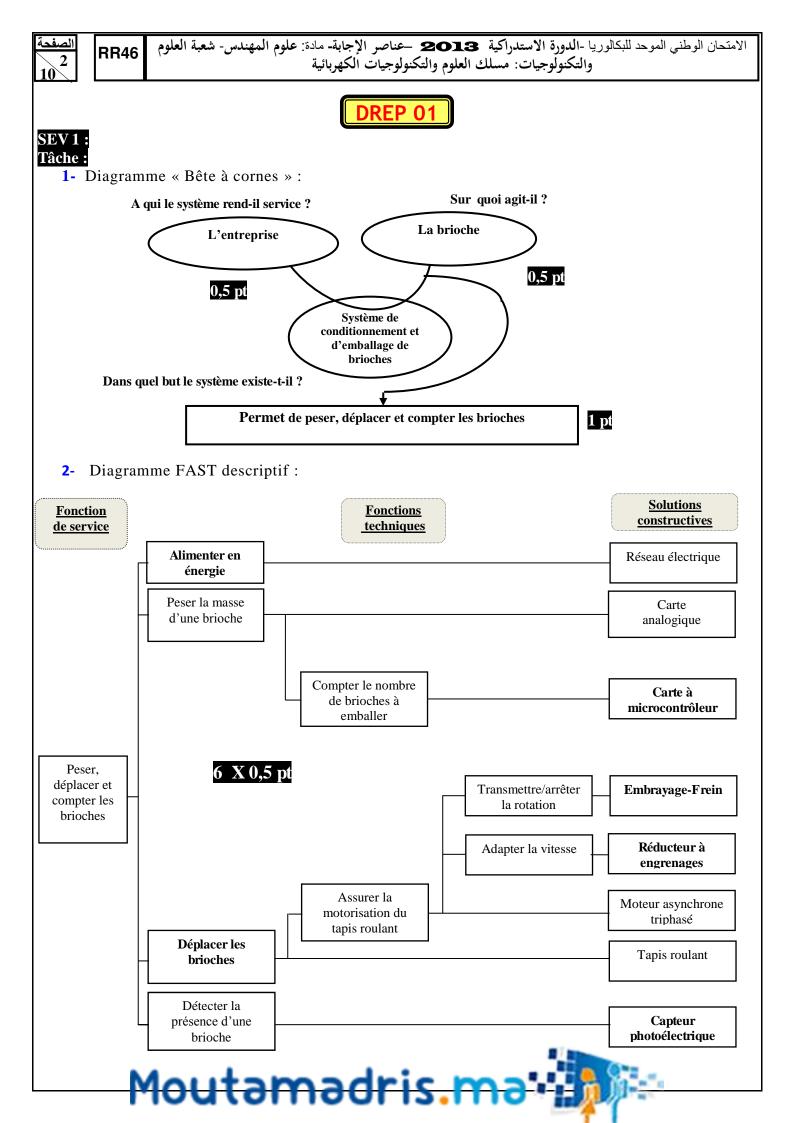
Tâche 3 :

Concevoir la liaison encastrement entre la couronne (15) et l'arbre du tambour (13) en utilisant :

- Une clavette parallèle.
- Une rondelle Grower.
- Un écrou Hexagonal.

الامتحان الوطني الموحد للبكالوريا

الدورة الاستدراكية 2013 عناصر الإجابة RR46



4	مدة الإنجاز	علوم المهندس	المادة
8	المعامل	شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية	الشعب(ة) أو المسلك

Eléments de corrigé

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالعلام والتكنولوجيات الكهربائية والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

DREP 02

Tâche 1 :

1 Couplage : Etoile

1 pt

2- Vitesse de synchronisme N_S:

$$f = N_S.p \Leftrightarrow N_S = f/p$$
; A.N: $N_S = 1500$ tr/mn. 1 pt

3- Valeur du glissement g :

$$g = (N_S - N_N) / N_S$$
;

 $\underline{A.N}$: $g \approx 6,67 \%$.

4- Puissance active P_a absorbée par le moteur :

$$P_a = P_u / \eta$$
;

$$\underline{A.N}$$
: $P_a \approx 1071 \text{ W}$.

5- Valeur du courant I_N absorbée par le moteur :

$$I_N = P_a / (\sqrt{3}.U.\cos\varphi)$$
;

$$\underline{A.N}$$
: $I_N \approx 2,01 A$.

1,5 pt

6- Ensemble des pertes pt dissipées dans le moteur :

$$p_t = P_a - P_u$$
 ;

$$p_t = P_a - P_u$$
 ; $A.N$: $p_t = 321$ W.

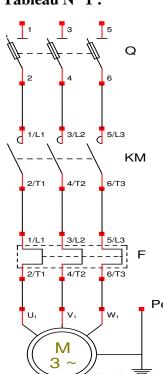
1 pt

7- Puissance réactive Q_a du moteur :

$$Q_a = P_a.tan\varphi$$

$$Q_a = P_a.tan\varphi$$
; $\underline{A.N}$: $Q_a \approx 887,5 \text{ VAR}$.

1,5 pt


8- Puissance apparente S:

$$C = \sqrt{2}$$
 III.

$$S = \sqrt{3}.U.I_N$$
; A.N: $S \approx 1392$ VA.

1,5 pt

Tâche 2: Tableau N° 1:

Repère	Nom	om Fonction	
Q	Sectionneur	Isoler, contenir les fusibles. Il doit être manœuvré à vide.	
KM	Contacteur	Etablir ou interrompre le courant dans le moteur.	
F	Relais thermique	Protéger l'installation contre les surcharges	

RR46

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كلاك حناصر الإجابة- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

DREP 03

Tâche 3 :

1- Valeur du champ magnétique maximale B_{max}:

$$B_{\text{max}} = U_1/(4,44.\text{f.S.N}_1)$$
 ; A.N.: $B_{\text{max}} = 1,2 \text{ T.}$

2- Rapport de transformation m et nombre de spires N₂du secondaire

$$m = U_{20} / U_1$$
; A.N: $m \approx 0,108$. 1 pt
 $N_2 = m.N_1$; A.N: $N_2 \approx 37$ spires. 1 pt

3- Facteur de puissance $\cos \varphi_{10}$ à vide :

$$\cos \varphi_{10} = P_{10}/(U_1.I_{10})$$
; A.N.: $\cos \varphi_{10} \approx 0.223$.

4-

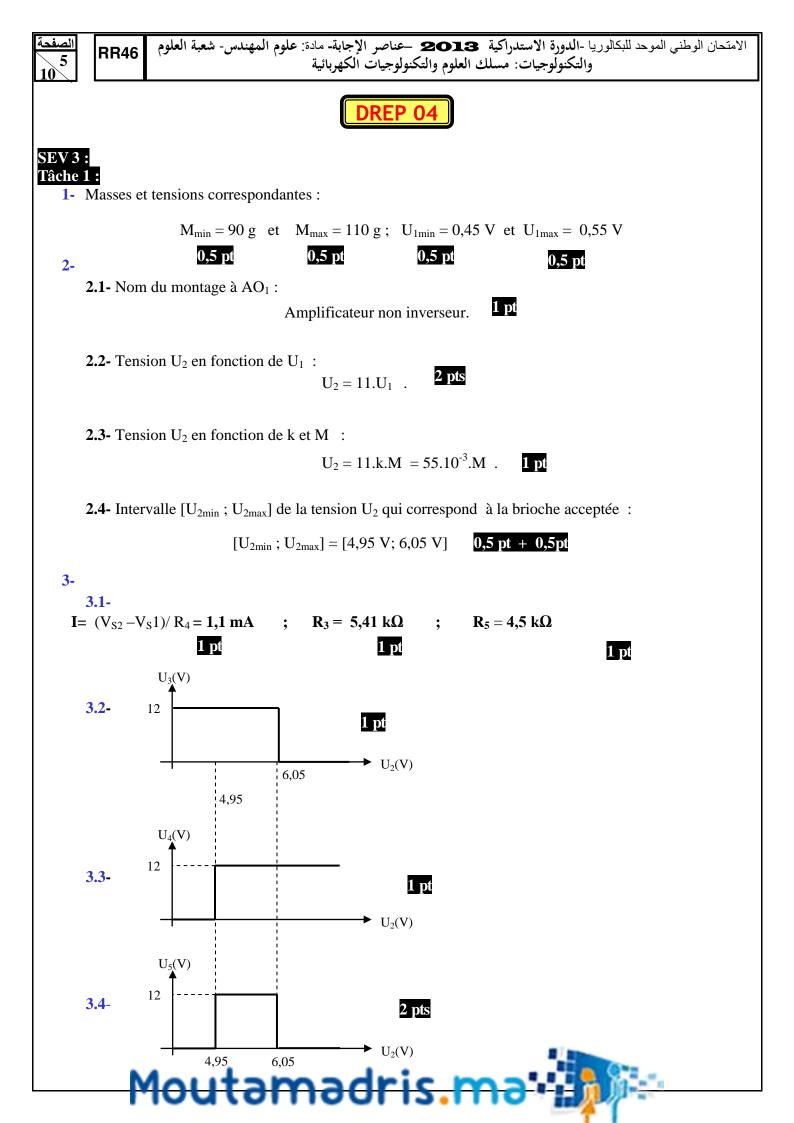
4.1- Valeur de la résistance R_f:

$$R_f: R_f = P_{10} / (I_{10}. \cos \varphi_{10})^2;$$
 A.N: $R_f \approx 1875 \Omega$

4.2- Réactance magnétisante X_m:

$$X_{m} = (U_{1})^{2} / (P_{10}.\tan \varphi_{10}); \quad A.N : X_{m} \approx 429 \Omega.$$
 2 pts

5- Valeur du courant nominal I_{2N} débité par le secondaire :


$$I_{2N} = S / U_{20}$$
; A.N: $I_{2N} = 25,3$ A. 1,5 pt

6- Valeur du rendement :

$$\eta = \left(U_{2N}.I_{2N}.cos \; \phi_2 \right) / \left(U_{2N}.I_{2N}.cos \; \phi_2 + P_{fer} + P_J \right) \quad avec \quad P_{fer} = P_{10} \, et \; P_j = P_{1cc}$$

$$\underline{A.N}: \eta \approx 87 \%$$
 2,5 pts

RR46

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية 13 كوي عناصر الإجابة- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 05

3.5- Fonction logique réalisée par par l'ensemble $\{D_1, D_2, R_6\}$:

Fonction « ET ».

1 pt

3.6- Fonction réalisée par le bloc C :

Comparateur à deux seuils, sa sortie prend l'état haut lorsque sa tension d'entrée est entre ses seuils et prend l'état bas en dehors de ses seuils.

RR46

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية 13 كوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 06

Tâche 2 (1 point par instruction) Programme de contrôle du système ORG 0x000; Adresse de départ après Reset GOTO Init Sous-Programme d'interruption RBO ORG 0x004; Adresse du sous-programme d'interruption BCF INTCON, GIE ; Inhiber toutes les interruptions INTCON, INTF **BCF** ; Inhiber *l* 'interruption RB0 ;---Sauvegarde des registres---; Non étudiée ---Décrémentation du Compteur_Brioches---**DECFSZ** Compteur_Brioches **GOTO** Restaur_Reg ; Commande de l'électroaimant de l'embrayage frein non étudiée MOVLW ; Préparation d'un nouveau paquet de 12 brioches MOVWF **Compteur Brioches** ;---Restauration des registres--Restaur_Reg ; Non étudiée RETFIE ; Retour d'interruption Programme principal Init **BSF** STATUS, RP0 ; Bank 1 **TRISA** CLRF ; PORTA en sortie MOVLW 0xFF **MOVWF TRISB** ; PORTB en entrée MOVLW ; Initialisation du compteur de brioches à 12 MOVWF Compteur_Brioches **MOVLW** 0x90; Validation de l'interruption RB0 MOVWF **INTCON** MOVLW 0xC0; Configuration de *l'interruption RB0 sur front* ↑ MOVWF OPRTION_REG **BCF** STATUS, RP0 ; Bank 0 ;---Lecture de l'état de Mr et Ar---Start **BTFSC** PORTB, 1 ; Lecture de RB1 (Ma) et stockage de son état dans **BSF** Etat Ma, 0 ; le bit 0 d'une case-mémoire Etat_Ma PORTB, 1 **BTFSS BCF** Etat_Ma, 0 BTFS C PORTB, 2 ; Lecture de RB2 (Ar) et stockage de son état dans Etat_Ar, 0 **BSF** ; le bit d'une case-mémoire Etat_Ar PORTB, 2 **BTFSS** BCF Etat_Ar, 0 COMF Etat Ar, F ; Complémentation de Ar ;---Evaluation de l'équation de la commande du moteur M [KA=(KA OU Ma) ET (NON Ar)]---**MOVF** Etat_Mot, W ; Lecture de l'ancien état du moteur M **IORWF** Etat_Ma, W ; Détermination du nouveau état de M **ANDWF** Etat_Ar, W MOVWF **Etat Mot** ;---Rafraîchissement de la sortie RAO commandant le moteur M---MOVF Etat_Mot, W **PORTA** MOVWF ; Transfert de Etat_Mot vers PORTA **GOTO** Start ; Retour au début **END**

mad

RR46

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كلاك حناصر الإجابة- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

DREP 07

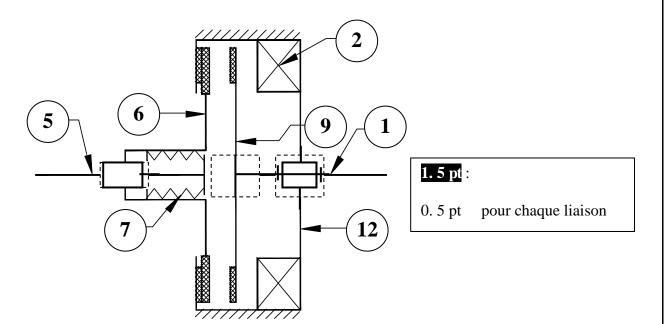
SEV 4: Tache 1:

1) Nom de l'embrayage étudié.

Embrayage progressif à friction plane à commande électromagnétique

1 pt

2) Sur le dessin, le système est-il dessiné en position embrayée ou freinée ; Justifier votre réponse .


Position freinée car les garnitures (8) sont en contact avec (4) qui est fixe (électro-aimant non excitée) .

3) Citer trois principales caractéristiques que doivent posséder les garnitures.

Position freinée : 0.25 pt justification : 0.25 pt.

- Grand coefficient de frottement.
- Résistance à l'usure.
- Résistance à l'échauffement.
- 4) Compléter le schéma cinématique
- 1.5 pt

0.5 pt pour chaque réponse juste

5) Effort presseur de l'embrayage $\,F_p\,$;

0. 75 pt pour l'expression .0.25 pt pour l'application numérique

$$Fp = Fatt - fr = 120 - 30 = 90 N$$

6) Couple transmissible C_t ;

$$C5 = Fp \cdot f \cdot Rmoy \cdot n = 90 \cdot 0.4 \cdot (80 + 60) \cdot 10^{-3} = 5.4 \text{ N.m}$$

7) Puissance P₅

P5 = C5. ω m = C5. 2π Nm/60 = 5,4. 2π . 1400/60 = 738 W

1 pt pour l'expression .
0. 5 pt pour l'application numérique

0. 75 pt pour l'expression .0.25 pt pour l'application numérique

فحة	الص
	9
10	

RR46

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالحك حناصر الإجابة- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 08

Tache 2:

1) Tableau des caractéristiques des engrenages.

	Pignon (17)	Roue dentée (16)	Pignon arbré (14)	Couronne (15)
d	125 mm	1000 mm	75 mm.	1200 mm
a	562,5 mm		562,5 mm	
r	$R_{17,16}$	= 1/8	r _{14,15} =	= 1/16

Justification:

 $\begin{array}{l} r_{14,15} \! = \! 1/16 = d_{14} \, / \, d_{15} \implies d_{14} = d_{15} \, / 16 = 1200 \, / \, 16 = 75 \ mm \\ a = (d_{14} - d_{15}) \, / \, 2 = (1200 - 75) \, / \, 2 = 562,5 \ mm \\ a = (d_{17} - d_6) \, / \, 2 = 562,5 \ \ \text{et } d_{17} \, / \, d_6 = 1/8 \ \implies d_{17} = 125 \ mm \end{array}$

2. 5 pts:

0. 5 pt pour chaque Ø et justification.

0.5 pt pour les entraxes

0.25 pt pour l'application numérique

et $d_6 = 1000 \text{ mm}$

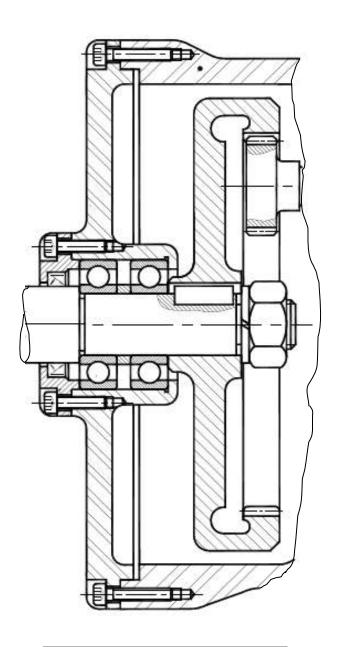
2) Le moteur tourne à une vitesse $N_m = 1400$ tr/min, calculer la vitesse de rotation tambour (13).

 $rg = 1/8 \cdot 1/16 = N_{13} / N_m \rightarrow N_{13} = 1400 / 128 = 10.93 \text{ tr/min}$.

3) Comparer le sens de rotation tambour (13) à celui du moteur ; Justifier votre réponse.

Même sens	Sens inverse	X	Justification : La nombre de contest extériour — 1
			Justification : Le nombre de contact extérieur = 1

0. 25 pt pour le sens .0.25 pt pour la justification



RR46

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية 13 كاك حناصر الإجابة- مادة: علوم المهندس- شعبة العلوم والتكنولوجيات الكهربائية

DREP 09

Tache 3:

pour la clavette . pour la rondelle . pour l'écrou. pour la présentation.

