

SYSTEME DE TRAITEMENT THERMIQUE

Le sujet comporte au total 24 pages.

Le sujet comporte 3 types de documents :

■ Pages **02 à 11 :** Socle du sujet *comportant les situations d'évaluation (***SEV**) (Couleur **Jaune**).

■ Pages 12 à 14 : Documents ressources portant la mention

DRES XX

(Couleur Rose).

■ Pages 15 à 24 : Documents réponses portant la mention

DREP XX

(Couleur blanche).

Le sujet comporte 3 situations d'évaluation (SEV) :

- SEVI : ANALYSE FONCTIONNELLE ET TRANSMISSION DE PUISSACE(sur 23 points)
- SEV2 : ÉTUDE ÉNERGÉTIQUE (sur 27 points)
- SEV3: ÉTUDE DE L'ACQUISITION ET DE TRAITEMENT (sur 30 points)

Les 3 SEV sont indépendantes et peuvent être traitées dans un ordre quelconque après lecture de l'introduction, de la description, du fonctionnement et des spécifications techniques du système en pages 2, 3 et 4.

La numérotation des questions est continue : de la question 1 (Q1) à la question 44 (Q44).

- Toutes les réponses doivent être rédigées sur les documents réponses : DREP XX
- Les pages portant en haut la mention DREP XX (Couleur Blanche) doivent être obligatoirement jointes à la copie du candidat même si elles ne comportent aucune réponse.
- Le sujet est noté sur 80 points.
- P Aucun document n'est autorisé.
- Sont autorisées les calculatrices non programmables.

الصفحة 2 NS 46

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع – مادة: علوم المهندس – شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات

I

INTRODUCTION

Le traitement thermique d'un métal est un ensemble de procédés industriels (trempe, revenu, recuit, etc.) qui permet de modifier ses propriétés physiques afin de lui donner de nouvelles caractéristiques mécaniques.

L'objet de l'épreuve est l'étude d'un système de traitement thermique, cas de la trempe, de pièces en acier (C45) afin de modifier leurs caractéristiques mécaniques (la dureté, la résistance à la rupture, etc.).

Le cycle de trempe comporte trois phases (figure 1):

- Première phase : chauffage progressif ;
- Deuxième phase : maintien de la température à 850 °C pendant une durée de 15 min ;
- Troisième phase : refroidissement rapide des pièces dans un bain d'huile.

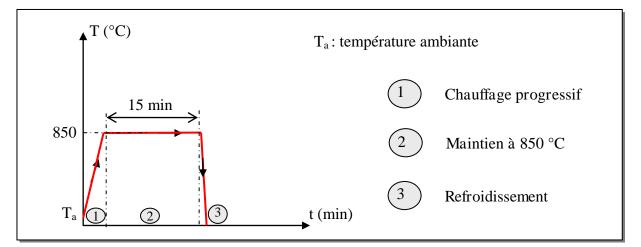
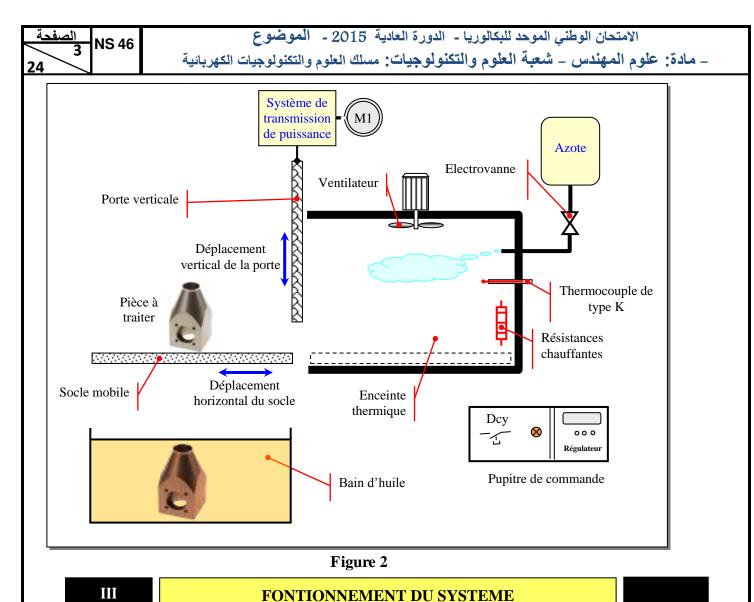


Figure 1


П

DESCRIPTION DU SYSTEME

Le système comporte essentiellement (voir Figure 2 de la page 3):

- un four électrique **contenant** :
 - une enceinte thermique ;
 - des résistances chauffantes ;
 - un ventilateur permettant une répartition homogène de la chaleur au sein de *l'enceinte*;
 - un capteur thermocouple de **type K** pour l'acquisition de la température dans l'enceinte du four;
 - une porte verticale ;
 - un socle mobile permettant de déplacer les *pièces lors d'un chargement ou* déchargement ;
- un bain d'huile assurant le refroidissement assez rapide des pièces;
- un dispositif d'injection de gaz (azote) dans l'enceinte afin que la trempe soit réalisée sous une atmosphère neutre, pour éviter la corrosion des pièces lors de leur traitement ;
- un pupitre de commande incluant un régulateur de température qui assure le maintien de la température à l'intérieur de l'enceinte à 850 °C.

Le fonctionnement du système est résumé par ce qui suit :

- Le chauffage des pièces est assuré par un four électrique alimenté par un réseau triphasé et constitué, principalement, par des groupements de résistances électriques.
- L'énergie dissipée par ces groupements de résistances est modulée par un gradateur triphasé à triacs.
- Une électrovanne permet d'alimenter le four en azote afin d'éviter la corrosion des pièces à traiter.
- Un régulateur de température assure le maintien de la température dans *l'enceinte* à 850 °C.
- Le traitement des informations est assuré par un microcontrôleur de type PIC16F877.
- Un ensemble {moteur M1 ; système de transmission de puissance} permet l'ouverture et la fermeture de la porte verticale du four.
- A l'état initial, les pièces en acier sont chargées sur le socle mobile et la porte du four est fermée.
- Une action sur le bouton poussoir **Dcy** *par l'opérateur permet de lancer le cycle de fo*nctionnement du système.

La durée du chauffage progressif des pièces (phase 1) est supposée faible devant la durée du maintien de la température à 850 °C (phase 2).

I Iguite e

<u>NB</u>:

- Le chargement et le déchargement des pièces sont effectués par un opérateur. Ces deux actions ne font pas partie de cette étude ;
- L'introduction des pièces dans le bain d'huile se fait aussi par l'opérateur.

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - المعندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربانية - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربانية
IV SITUATIONS D'ÉVALUATION (SEV)
SEV 1 : ANALYSE FONCTIONNELLE ET TRANSMISSION DE PUISSACE
Tâche 1 : Expression du besoin
Q1: Compléter le diagramme Bête à cornes. 2 pts
Tâche 2 : <u>Identification des solutions constructives</u>
Q2: Compléter le FAST partiel du système. 3 pts
Tâche 3 : Analyse partielle du système de transmission de puissance
Q3: En se référant <i>au dessin d'ensemble du réducteur à engrenages (DRES 01 page 12)</i> , compléter le schéma cinématique minimal. 2.5 pts
Tâche 4 : <u>Détermination de quelques caractéristiques du réducteur à engrenages</u> (DRES 01)
Le réducteur à engrenages est constitué par les couples d'engrenages cylindriques à denture droite (4, 7) et (6, 8) de <u>même entraxe</u> . On donne:
• Rapport de réduction $\mathbf{r}_{(4,7)}$ de l'engrenage $(4,7)$: $\mathbf{r}_{(4,7)} = 1/2$
• Rapport de réduction $\mathbf{r}_{(6,8)}$ de l'engrenage $(6,8)$: $\mathbf{r}_{(6,8)} = 1/4$
• Diamètre primitif dp ₈ de la couronne(8) : $dp_8 = 120 \text{ mm}$
• Vitesse de rotation du moteur M1 est $N_{M1} = 500 \text{ tr/min}$
Q4: Déterminer le diamètre primitif $d\mathbf{p}_6$ du pignon arbré (6).
Q5: Calculer l'entraxe (a) de l'engrenage (6, 8).
Q6: Déterminer le diamètre primitif $\mathbf{dp_4}$ du pignon arbré (4), en prenant $a = 45$ mm. 1 pt
Q7: Déduire le diamètre primitif dp ₇ de la roue dentée(7).
Q8: Calculer le rapport de réduction global (rg) du réducteur à engrenages.
Tâche 5: Etude partielle du système pignons-chaine :
Q9: Citer deux inconvénients du système pignons-chaine. 1 pt
Q10: En exploitant les données de la tâche 4, déterminer la fréquence de rotation N_{11} (en tr/min) du pignon 11 et en déduire alors la vitesse angulaire ω_{11} en rad/s.
Q11: En déduire sa vitesse linéaire V_{ch} (en m/s) de la chaîne engrainée avec le pignon (11), sachant que
$\mathbf{d_{p11}} = 50 \text{ mm.}$ 1 pt
Moutamadric mastille
Mod (of Hour 13.1110.

ا<u>لصفحة</u> 6 NS 46 الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q12: En se référant au schéma cinématique du système (page16), déterminer la valeur de l'angle θ (en degrés) de rotation du pignon (11) permettant à la porte du four de s'ouvrir complètement sachant que la hauteur de la porte est H =0,5 m et les pignons [(11), (33) et (34)] ont le même diamètre.
Q.5 pt

Q13: Déterminer le temps T (en secondes) nécessaire à l'ouverture complète de la porte. 1 pt

Tâche 6: Travail graphique (page 18) 6 pts

Q14: Compléter le dessin de la liaison encastrement entre le pignon (11) et l'arbre (5) en utilisant :

- Une vis entièrement filetée : vis à tête hexagonale ISO 4017 M8 x 26 ;
- Une rondelle plate : épaisseur 2 mm;
- Une clavette parallèle à section carrée de longueur 16 mm et de hauteur 5 mm.

NB : le dessin doit être représenté en coupe partielle en utilisant les instruments du dessin.

SEV 2 : ÉTUDE ÉNERGÉTIQUE

Tâche 7 : Etude du système de chauffage à pleine puissance

On admet que le schéma équivalent du système de chauffage à pleine puissance est celui de la Figure 4.

Q15: Donner *l'expression* de la puissance totale P_t dissipée dans les trois résistances en fonction de la tension U et de la résistance R_c . 2 pts

Q16: Déduire la valeur de la résistance R_c sachant que la puissance totale P_t est de 40 kW sous une tension U = 400 V. 2 pts

Q17: Calculer les valeurs efficaces des courants J et I. 3 pts

Q18: Quelle est la valeur de la puissance réactive totale Q_t absorbée par ces résistances ? 1 pt



Figure 4

Tâche 8 : Etude du système de ventilation

Le ventilateur est entraîné par un moteur triphasé MV qui est alimenté par une tension de 400 V-50 Hz; ce dernier possède 6 pôles et absorbe un courant nominal $I_N = 15,5$ A avec un facteur de puissance $cos \phi = 0,8$.

La vitesse de rotation nominale est $n_N = 970$ tr/min.

Les enroulements statoriques sont couplés en triangle et chacun a une résistance $\mathbf{R} = \mathbf{0.8} \ \Omega$

Les pertes fer du stator sont $P_{fs} = 206$ W et les pertes mécaniques sont $p_m = 200$

Calculer la valeur:

Q19: de la vitesse de synchronisme n_s (en tr/min) et le glissement g (en %).

Q20: de la puissance active P_a absorbée par le moteur. 1.5 pt

Q21: des pertes par effet Joule P_{Js} dans le stator. 1.5 pt

Q22: de la puissance électromagnétique P_{Tr} transmise au rotor. 1.5 pt

Q23: des pertes par effet Joule P_{Jr} dans le rotor. 1.5 pt

Q24: du couple électromagnétique C_e. 2 pts

Q25: du rendement $\eta_{\rm MV}$ du moteur. 2 pts

Tâche 9 : Etude du démarrage du moteur MV

Pour réduire les pointes de courant à la mise sous tension du moteur MV, le mode de démarrage choisi est "ETOILE-TRIANGLE".

Le moteur MV démarre en étant couplé en étoile pendant une durée de 10 secondes.

Après écoulement de cette durée, il est couplé automatiquement en triangle. (voir schéma du circuit de commande au DRES 02 page 13).

Q26: Compléter le schéma du circuit de puissance en exploitant le schéma de la plaque à bornes du moteur. 3 pts

Q27: Compléter les chronogrammes correspondant au fonctionnement du moteur lors du démarrage ETOILE-TRIANGLE. 3 pts

SEV 3: ETUDE DE L'ACQUISITION ET DE TRAITEMENT

Tâche 10 : Etude de l'acquisition de la température

La figure 5 rappelle *le principe physique d'un thermocouple* ; la tension entre les 2 extrémités du métal **A** dépend de la nature physique de ce métal et des températures de ces 2 extrémités.

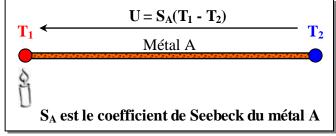


Figure 5

La figure 6 (page 8) montre le schéma simplifié du principe de mesure de la tension développée par un thermocouple, où :

• T_X est la température inconnue à mesurer.

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع المعدد البكالوريا - الدورة العادية 2015 - الموضوع المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

- ullet T_C est la **température du bornier** du raccordement du thermocouple au système d'acquisition.
- T_{ACQ} est la **température** de la zone où sont soudés les **fils de cuivre** dans la carte d'acquisition.
- S_A, S_B, S_C sont respectivement **les sensibilités** (**coefficients de Seebeck**) considérées constantes et non nulles, des 2 métaux **A** et **B** du thermocouple et des 2 fils de cuivre de liaison avec la carte du système *d'ac*quisition.
- U_M est la **tension** développée par l'ensemble des jonctions du thermocouple et les fils des liaisons.

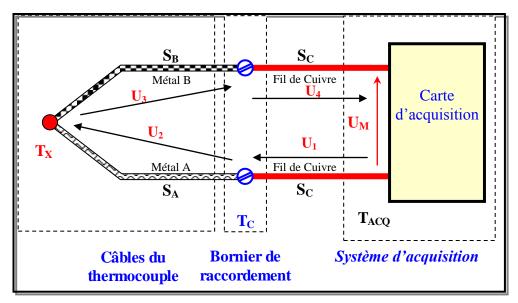


Figure 6

Q28: En partant de la formule développée dans la figure 5, montrer que :

$$U_{M} = (S_{A} - S_{B})(T_{X} - T_{C}) \quad \text{relation : (1)}$$
 2 pts

On met la relation (1) sous la forme suivante, où S_{AB} est le coefficient de Seebeck du thermocouple formé des métaux A et B :

$$U_M = (S_A - S_B)(T_X - T_C) = S_{AB}(T_X - T_C) = S_{AB}T_X - S_{AB}T_C$$
 relation: (2)

On plonge les jonctions de raccordement dans de l'eau glacée pour avoir ($T_C = 0$ °C) ; ainsi U_M dépendra uniquement de T_X .

Q29: Sachant que $S_{AB} \neq 0$, donner alors l'expression de la tension U_M . 1 pt

La relation (2) montre que la tension mesurée U_M dépend de la température inconnue T_X à mesurer et de la température T_C de l'environnement du bornier du raccordement du thermocouple au système d'acquisition. On appelle T_X la température de « la jonction chaude » et T_C la température de « la jonction froide ». L'utilisation de l'eau glacée, pour compenser la température de la jonction froide et rendre U_M dépendant uniquement de T_X , n'est pas une solution pratique. La figure 7 (page 9) donne le schéma de principe d'une solution de compensation facile à réaliser, qui consiste à mesurer la tension image de la température T_C du bornier par un autre capteur auxiliaire, représentée par la tension U_{CJC} , et la réinjecter dans la maille de mesure du thermocouple.

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع المعدد البكالوريا - الدورة العادية 2015 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربانية

Q30: Sachant que la tension $U_{TH} = S_{AB}T_X - S_{AB}T_C$, donner alors la nouvelle expression de U_{ML} 1.5 pt

Q31: Quelle condition doit vérifier la tension U_{CJC} pour la compensation de T_C ?

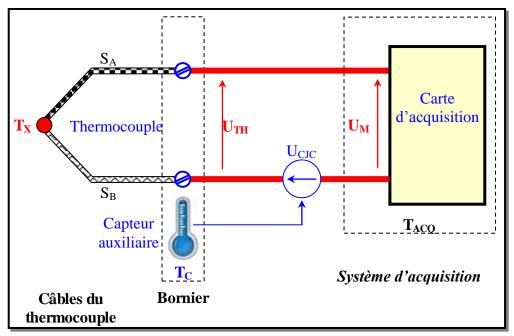


Figure 7

La figure 8 représente un exemple de schéma de montage implémentant la compensation de T_C suivant le principe de la figure 7, où le capteur auxiliaire est un capteur électronique de type LM35.

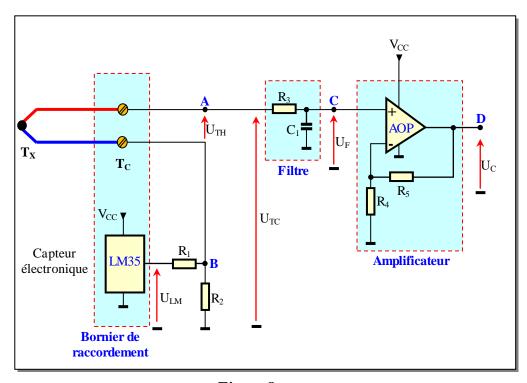
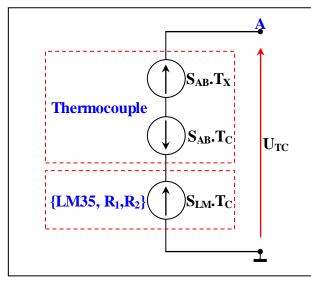
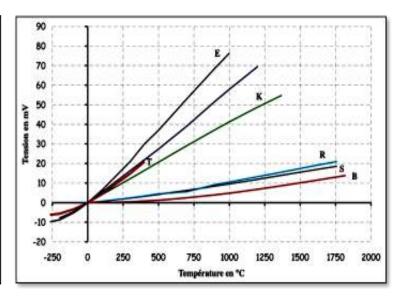


Figure 8

Vu du point A, *l'ensemble* {thermocouple, LM35} peut être représenté par le schéma équivalent de la figure 9 où S_{LM} est la sensibilité du LM35 associé au diviseur de tension (R₁, 1)

10 NS 46


الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية


Q32: Donner l'expression de la tension U_{TC} .

1.5 pt

Q33: Quelle est la condition à réaliser pour avoir $U_{TC} = S_{AB}T_X$?

Q34: Déterminer la valeur de S_{AB} en $(\mu V/^{\circ}C)$ d'après la caractéristique U = f(T) du thermocouple qui est 1.5 pt de type **K** (**figure 10**).

1.5 pt

Figure 9

Figure 10

Le filtre {R₃, C₁} (**Figure 8**) réduit l'effet des hautes fréquences des interférences électromagnétiques qui altèrent le système d'acquisition. La fonction de transfert d'un tel filtre est de la forme :

$$\underline{A} = \frac{\underline{U_F}}{\underline{U_{TC}}} = \frac{1}{1+j\frac{f}{f_0}}$$

Q35: Quel est le type de ce filtre (passe-bas, passe-haut ou passe-bande)? Donner alors la valeur approchée du module $\|\underline{A}\|$ pour les basses fréquences, c'est-à-dire ($\mathbf{f} \ll \mathbf{f_0}$). 1.5 pt

Q36: En déduire dans cette condition ($\mathbf{f} \ll \mathbf{f}_0$), l'expression approchée de $\mathbf{U}_{\mathbf{F}} = \mathbf{f}(\mathbf{U}_{\mathbf{TC}})$.

1.5 pt

L'amplificateur (Figure 8) permet d'adapter le signal représentant la température T_X au convertisseur analogique/numérique (ADC) du microcontrôleur.

Q37: Donner l'expression de l'amplification $A_V = U_C / U_F$ en fonction de R_4 et R_5 .

Q38: On considère que $U_C = S_M \cdot T_X$ (S_M : sensibilité du montage) et $U_F = U_{TC}$, donner alors la nouvelle expression de l'amplification A_V en fonction de S_M et S_{AB} . | 1.5 pt

Q39: Déterminer la valeur de A_V pour avoir une sensibilité du montage $S_{M=}5$ mV/°C.

2 pts

Q40: Donner alors la valeur de U_C pour une température T_X de 850 °C.

1 pt

فحة	الص	NC 4C
/	11	NS 46
24	\	

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات

Tâche 11 : GRAFCET de point de vue Partie Commande (PC)

En tenant compte du GRAFCET de point de vue système et des affectations des entrées et des sorties (DRES 02 de la page 13).

Q41: Compléter le GRAFCET de point de vue PC.

3 pts

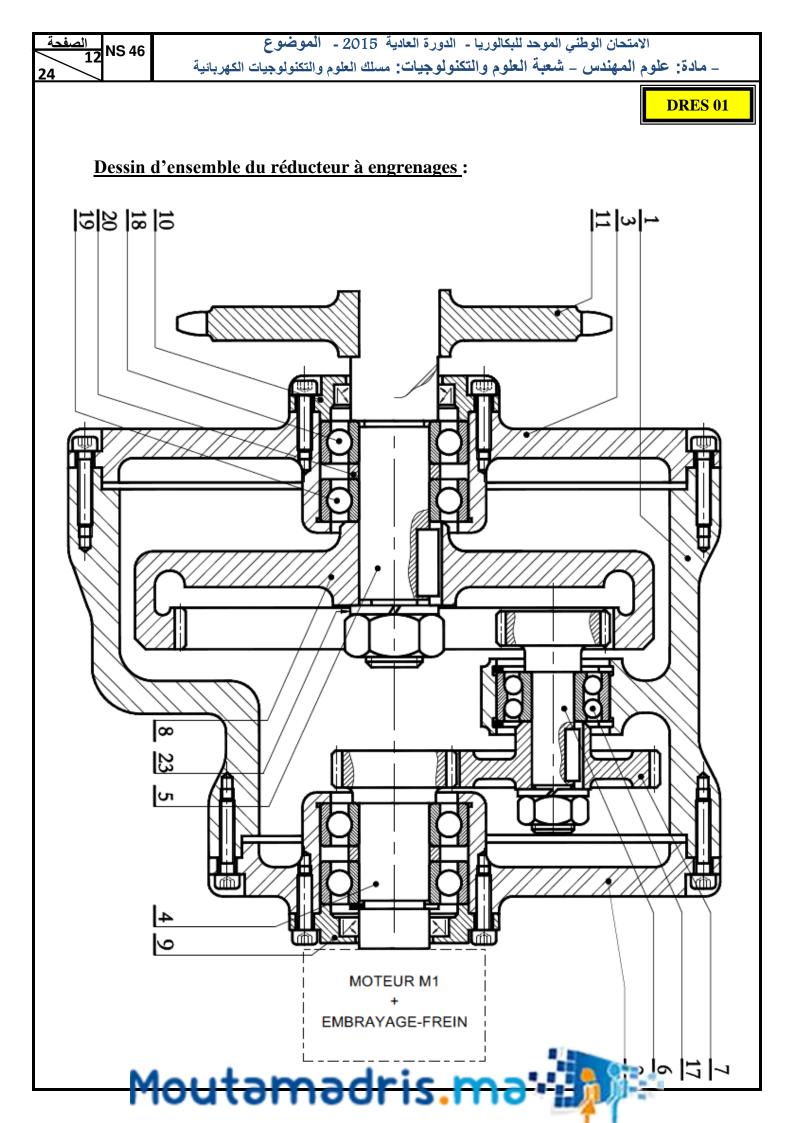
Tâche 12 : Traitement du "démarrage Etoile Triangle" par micro controleur

Mots de commande du "démarrage Etoile Triangle":

La commande de ce mode de démarrage est gérée par le microcontrôleur PIC 16F877 via les sorties RC₀, RC₁ et RC₂ du port C suivant le schéma de commande du document DRES 02 page 13.

Q42: Donner les deux mots de commande W1 et W2 (en Hexadécimal) à envoyer au port C correspondant respectivement au couplage "Etoile" et au couplage "Triangle", sachant que les bits non utilisés du port C sont à "0". 1 pt

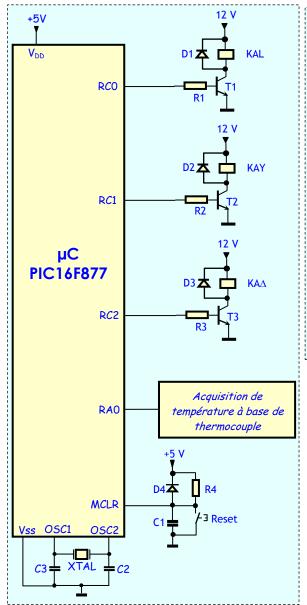
Temporisation du "démarrage Etoile Triangle":

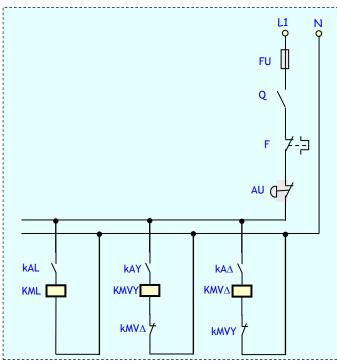

En prenant comme exemple la temporisation de « 10 s » en relation avec le démarrage "étoile triangle" du moteur MV. Ainsi :

- La temporisation est basée sur l'interruption du Timer 0 (TMR0).
- L'interruption de **TMR0** survient toutes les « $65536 \mu s$ ».
- Dans le code de l'interruption de TMR0, on décrémente un compteur Tempo_Compt chargé préalablement avec une valeur Tempo_Val correspondant à la temporisation de 10 s.
- Quand le compteur arrive à la valeur « 0 », on met à « 1 » le contenu d'une case mémoire
 Tempo_Etat qui atteste de l'état de fin de temporisation; de même, on réinitialise le compteur à sa valeur initiale.

Q43: Donner la valeur entière Tempo_Val du compteur correspondant. 2 pts

Q44: Compléter le programme correspondant à cette temporisation. Le jeu d'instructions du μC PIC16F877 est donné dans le document DRES 03 (page 14). 5 pts





الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Schéma du circuit de commande :

DRES 02

Affectation des entrées :

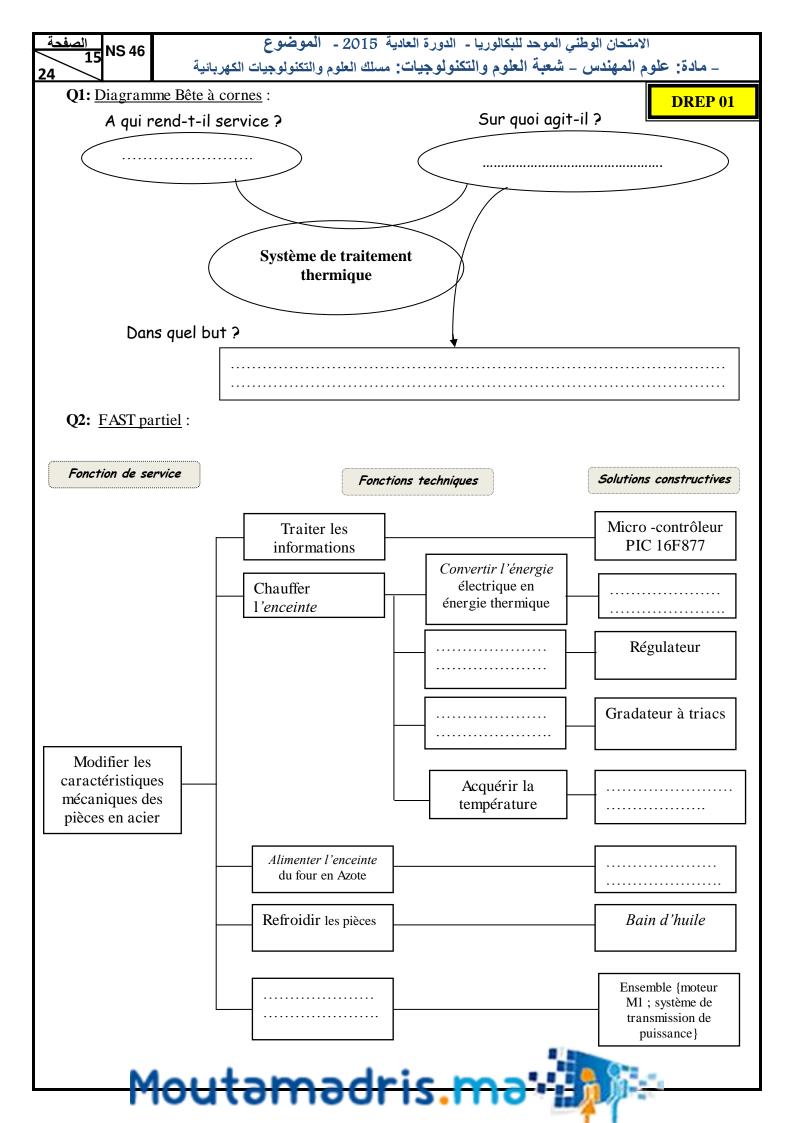
Capteurs et boutons poussoirs	Désignation
Porte ouverte	PO
Porte fermée	PF
Socle entrée	SE
Socle sortie	SS
Départ cycle	Dey

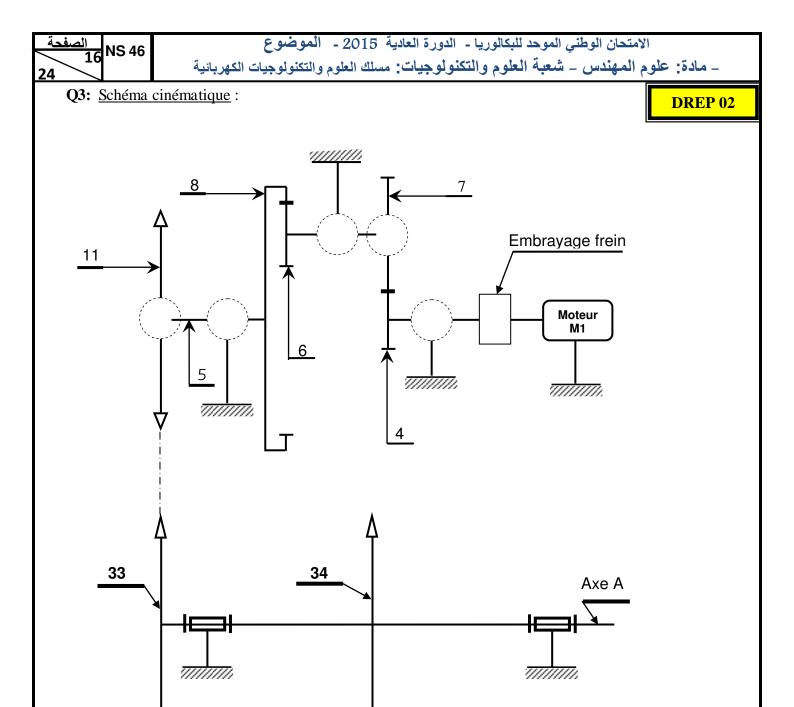
Affectation des sorties:

Action	Pré actionnneur	Actionneur
Ouvrir la porte	KMPO	Moteur M1
Fermer la porte	KMPF	Moteur M1
Entrer socle mobile	KMSE	Moteur MS
Sortir socle mobile	KMSS	Moteur MS
Alimenter en gaz « Azote »	YV	Electrovanne
Actionner le régulateur	REG	Régulateur
Répartir la chaleur dans l'einceinte	XX (non étudié)	Ventilateur
Lancer la temporisation de 5 min		T1
Temporisation de 15 min		T2

DRES 03

Jeu d'instructions du μC PIC 16F877


IN	STRU	CTIONS OPERANT SUR REGISTRE (direct)	indicateurs	Cycles
ADDWF	F,d	$W+F \rightarrow \{W,F?d\}$	C,DC,Z	1
ANDWF	F,d	W and $F \rightarrow \{W,F?d\}$	Z	1
CLRF	F	Clear F	Z	1
CLRW		Clear W	Z	1
CLRWDT		Clear Watchdoc timer	TO', PD'	1
COMF	F,d	Complémente F → {W,F ? d}	Z	1
DECF	F,d	décrémente F → {W,F ? d}	Z	1
DECFSZ	F,d	décrémente $F \rightarrow \{W,F?d\}$ skip if 0		1(2)
INCF	F,d	incrémente F → {W,F ? d}	Z	1
INCFSZ	F,d	incrémente $F \rightarrow \{W, F? d\}$ skip if 0		1(2)
IORWF	F,d	W or $F \rightarrow \{W,F?d\}$	Z	1
MOVF	F,d	F → {W,F?d}	Z	1
MOVWF	F	$W \rightarrow F$		1
RLF	F,d	rotation à gauche de F a travers $C \rightarrow \{W,F?d\}$	С	1
RRF	F,d	rotation à droite de F a travers C → {W,F?d}	34	1
SUBWF	F,d	$F - W \rightarrow \{W, F? d\}$	C,DC,Z	1
SWAPF	F,d	permute les 2 quartets de F → {W,F ? d}		1
XORWF	F,d	$W \text{ xor } F \to \{W,F?d\}$	Z	1
INSTRUC	TIONS	S OPERANT SUR BIT	Ţ	
BCF	F,b	RAZ du bit b du registre F		1
DOE		DAIL J. Like J		S 12


INSTRUCTIONS OPERANT SUR BIT			
BCF	F,b	RAZ du bit b du registre F	1
BSF	F,b	RAU du bit b du registre F	1
BTFSC	F,b	teste le bit b de F, si 0 saute une instruction	1(2)
BTFSS	F,b	teste le bit b de F, si 1 saute une instruction	1(2)

INSTRUC	TION	IS OPERANT SUR DONNEE (Immediat)		
ADDLW	K	$W + K \rightarrow W$	C,DC,Z	1
ANDLW	K	W and $K \rightarrow W$	Z	1
IORLW	K	$W \text{ or } K \rightarrow W$	Z	1
MOVLW	K	$K \rightarrow W$		1
SUBLW	K	$K - W \rightarrow W$	C,DC,Z	1
XORLW	K	$W \text{ xor } K \rightarrow W$	Z	1

INSTRUC	CTION	IS GENERALES		
CALL	L	Branchement à un sous programme de label L		2
GOTO	L	branchement à la ligne de label L		2
NOP		No operation		1
RETURN		retourne d'un sous programme		2
RETFIE		Retour d'interruption		2
RETLW	K	retourne d'un sous programme avec K dans W		2
SLEEP		se met en mode standby	TO', PD'	1

Q4: Diamètre primitif dp₆ du pignon arbré (6):

...

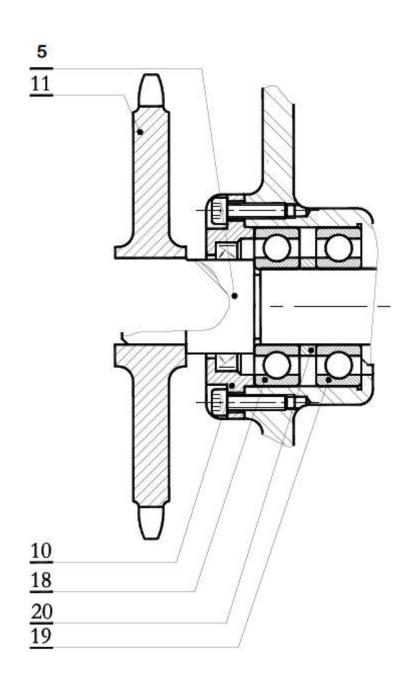
Q5: Entraxe (a) de l'engrenage (6, 8):

Chaine soulevant la porte

صفحة	11	NC	46
$\overline{}$	17	NS	40

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q6: <u>Diamètre primitif dp₄ du pignon arbré (4</u>):	DREP 03
Q7: <u>Diamètre primitif dp₇ de la roue dentée(7)</u> :	
Q8: Rapport de réduction global (rg) du réducteur à engrenages :	
Q9: <u>Deux inconvénients des systèmes pignons-chaine</u> :	
Q10: Fréquence de rotation N_{11} (tr/min) du pignon 11 et vitesse angulaire ω_{11} en rad/s	:
Q11: Vitesse linéaire V_{ch} (m/min) de la chaîne engrainée avec le pignon (11) :	
Q12: Valeur de <i>l'angle</i> θ (en degrés) de rotation du pignon (11):	
Q13: <u>Temps T (en s) nécessaire pour l'ouverture complète de la porte du four</u> :	


Moutamadris.ma:

الصفحة 18 NS 46 24 الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع

- مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

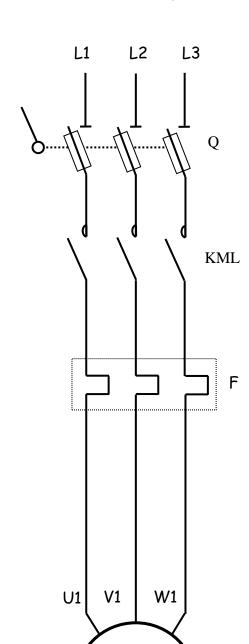
Q14: Dessin à compléter :

DREP 04

<u>صفحة</u>	11	NC	46
$\overline{}$	19	NS	40

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع

4	# .50 # .50 5 jo - # .50 5 jo - # . 50 jo - # .
Q15:	Expression de la puissance totale P _t : DREP 05
Q16:	de la résistance $R_{\underline{C}}$:
Q17:	Valeurs efficaces des courants J et I:
Q18:	Valeur de la puissance réactive Q _t :
Q19:	Vitesse de synchronisme n_S et glissement g :
Q20:	Puissance active P _a absorbée par le moteur :
Q21:	Pertes par effet Joule P_{Js} dans le stator :
Q22:	Puissance électromagnétique P _{Tr} transmise:
Q23:	Pertes par effet Joule $P_{\underline{Jr}}$ dans le rotor :
024:	Couple électromagnétique $\mathbf{C_e}$:
Q2	
Q25:	Rendement η_{MV} du moteur :

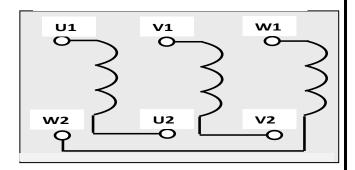

Moutamadris.ma:

- مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

DREP 06

Q26: Schéma du circuit de puissance à compléter

Schéma du circuit de puissance :

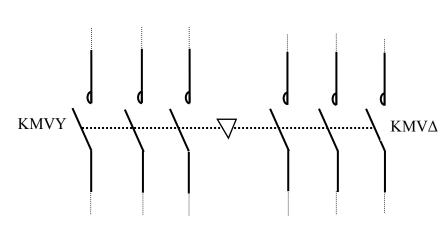


MAS

V2

U2

Schéma de la plaque à bornes :

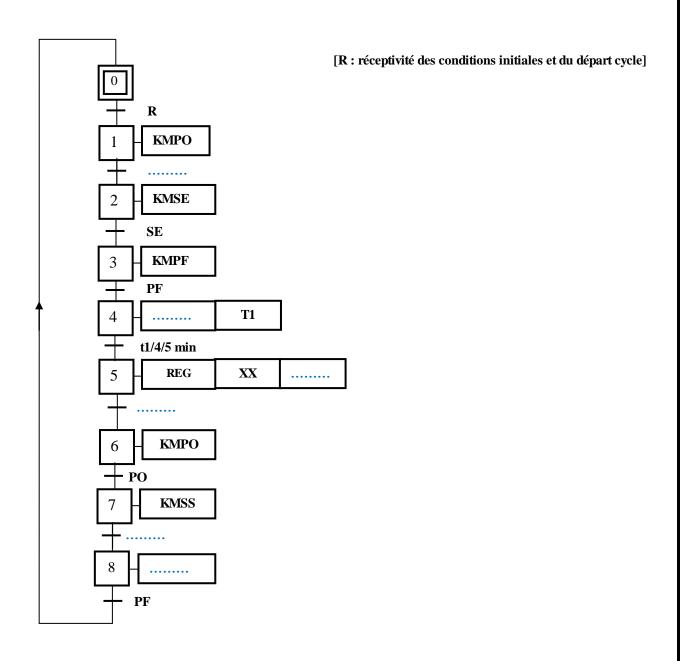


Q : Sectionneur porte fusibles

F: Relais thermique

KML : contacteur de ligne

KMVY : contacteur du couplage étoile $KMV\Delta$: contacteur du couplage triangle



الصفحة	NS 46	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع
24		 مادة: علوم المهندس _ شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربانية
Q27:	Chrono	ogrammes à compléter : DREP 07
	•	
KMV		
	1	→ t(s)
	0	
KMVΔ		
	` ₁	
		→ t(s)
	0'	
KML	†	
	1	
	0	10
	i	
Q28:	On mo	$\underline{\text{ontre que } \mathbf{U}_{\underline{\mathbf{M}}} = (\mathbf{S}_{\underline{\mathbf{A}}} - \mathbf{S}_{\underline{\mathbf{B}}})(\mathbf{T}_{\underline{\mathbf{X}}} - \mathbf{T}_{\underline{\mathbf{C}}})}$
Q29:	Expres	ssion de la tension U_M :
O30:	Nouve	elle expression de la tension U_M :
QC 0.	110416	who empression do na tension em
	••••••	
Q31:	<u>Conditi</u>	on que doit vérifier la tension $U_{\underline{CJC}}$ pour la compensation de $\underline{T_C}$:
022	-	
Q32:	Express	\underline{Sion} de la tension $\underline{\mathbf{U}}_{\underline{\mathbf{TC}}}$:
O33·	Condit	ion à réaliser pour avoir $U_{TC} = S_{AB}T_X$:
QJJ.	Conuit	Ton a realiser pour avoir o IC - DABIX.
	••••••••	······································
		loutamadris ma''''

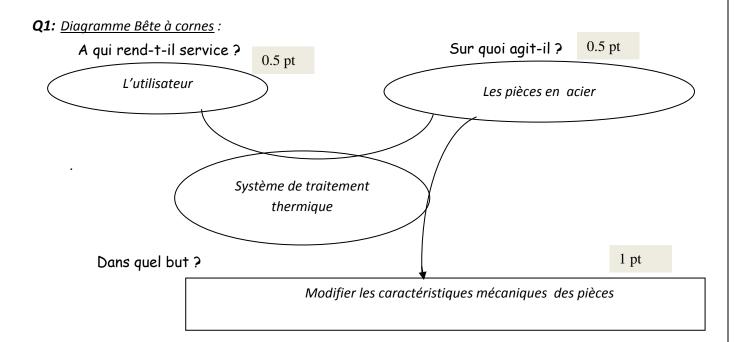
<u>الصة</u> 22	كالوريا - الدورة العادية 2015 - الموضوع المحادية العلام والتكنولوجيات الكهربانية	
Q34:	. <u>Valeur de S_{AB} en (µV/°C)</u> :	DREP 08
025.	T 1 Clare of the last of the second of the s	6 4
Qss:	Type de filtre et valeur approchée du module A pour les bass	ses frequences:
Q36:	Expression approchée de U _F :	
-	<u>-</u>	
Q37:	Expression de l'amplification A _V = U _C / U _F en fonction de R ₄ e	et R ₅ :
Q38:	Nouvelle expression de l'amplification $A_{\underline{V}}$ en fonction de $S_{\underline{M}}$	et S_{AB} :
_		
Q39:	<u>Valeur de A_V pour avoir une sensibilité de $5 \text{ mV/}^{\circ}\text{C}$:</u>	
O40:	Valeur de U_C pour une température T_X de 850 °C:	
Q.o.	valeur de og pour une temperature 2 <u>x</u> de oev e	

Q41: GRAFCET de point de vue commande à compléter :

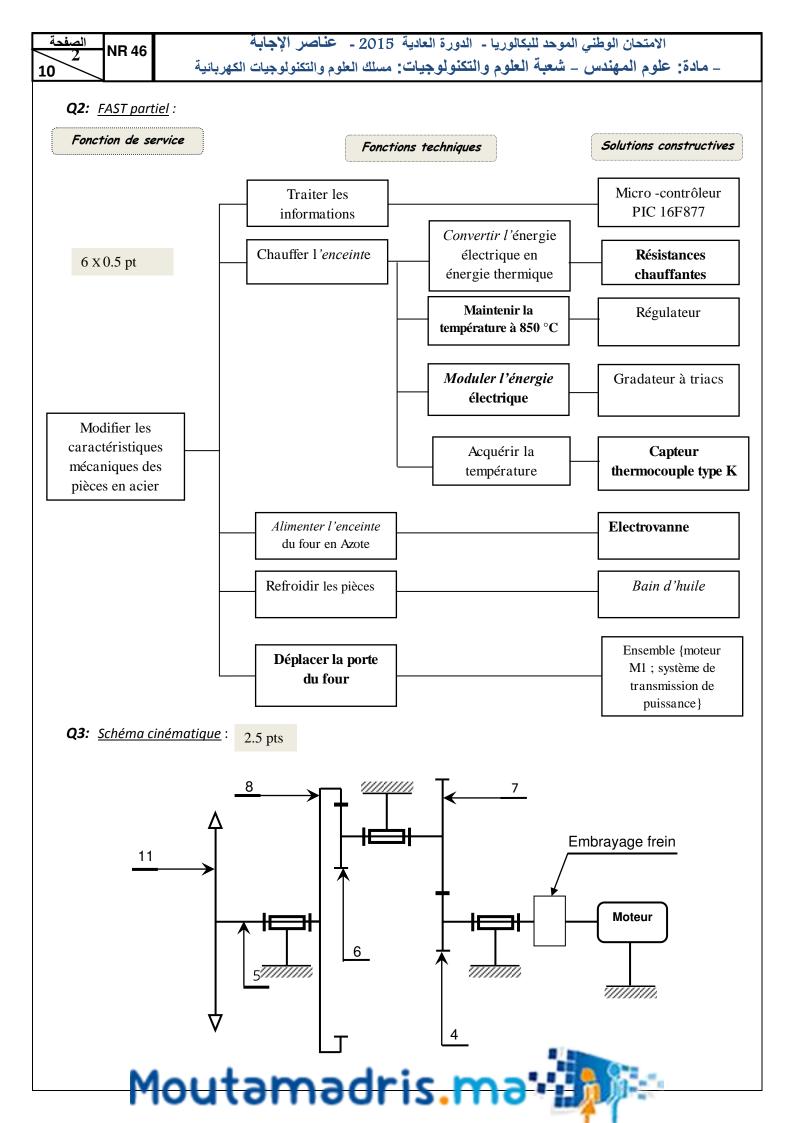
صفحة	الد	NC 4C
$\overline{}$	24	NS 46
24 >		

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - الموضوع - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

DREP	10
------	----


Q42: Mots de commandes en hexadécimal:
Q43: Valeur entière du compteur correspondant à la temporisation de « 10 s » :

Q44: <u>Programme correspondant</u>:


Etiquette	Code opération	Opérande	Commentaire	
•	; Sous-Programme d'interruption TMR0			
	ORG	0x004	Adresse d'interruption	
		; Sauvegarde des registres W et STATUS		
	BCF	INTCON, GIE		
	MOVWF	SAVE_W	Sauvegarde de W	
	SWAPF	STATUS, W	SWAP de STATUS avec résultat dans W	
	MOVWF	SAVE_STATUS	Sauvegarde de STATUS swappé	
	; Traitement de l'interruption de TMR0			
	DECFSZ			
		Reg_Restore		
	BSF			
	MOVLW			
	MOVWF	Tempo_Compt		
; Restaurer les registres W et STAT		egistres W et STATUS		
Reg_Restore	SWAPF	SAVE_STATUS, W	SWAP ancien STATUS avec résultat dans W	
	MOVWF	STATUS	Restauration de STATUS	
	SWAPF	SAVE_W, F	SWAP ancien W avec résultat dans SAVE_W	
	SWAPF	SAVE_W, W	SWAP W avec résultat dans W	
			Retour d'interruption	

1 pt

1 pt

1 pt

Q4: <u>Diamètre primitif **dp**₆ du pignon arbré **(6)**: 1 pt</u>

$$r_{(6,8)} = \frac{1}{4} = N8/N6 = dp6/dp8$$

donc
$$dp6 = 30 \text{ mm}$$
.

$$a = (dp8 - dp6) / 2 = 45 mm.$$

Q6: Diamètre primitif dp_4 du pignon arbré (4):

$$r_{(4,7)} = 1/2$$

a = (dp4 + dp7) / 2 et
$$r_{(4,7)}$$
 = dp4 /dp7
donc dp4 = 2a $r_{(4,7)}$ /(1+ $r_{(4,7)}$) =30 mm

1 pt

Q7: Diamètre primitif **dp**₇ de la roue dentée**(7)**: 1 pt

$$dp7 = 2dp4 = 2x30 = 60 \text{ mm}$$

Q8: Rapport de réduction global **(rg)** du réducteur à engrenages :

$$rg = r_{(4,7)} x r_{(6,8)}$$

=1/8.

Q9: Deux inconvénients des systèmes pignons-chaine :

- ✓ Nécessite un entretien fréquent
- √ Nécessite une lubrification fréquente

Q10: Fréquence de rotation N_{11} (tr/min) du pignon 11 et vitesse angulaire ω_{11} (rad/s):

Q11: <u>Vitesse linéaire V_{ch}(m/s) de la chaine engrainée avec le pignon (11)</u> :

$$\begin{aligned} \textbf{V}_{ch} &= \omega_{11} \, x \, R_{11} \\ &= 6,543 \, x \, 25.10^{-3} \\ \textbf{Vch} &= 0.163 \, \text{m/s}. \end{aligned}$$

Q12: Valeur de l'angle θ (**en degrés**) de rotation du pignon (11) : 0.5 pt

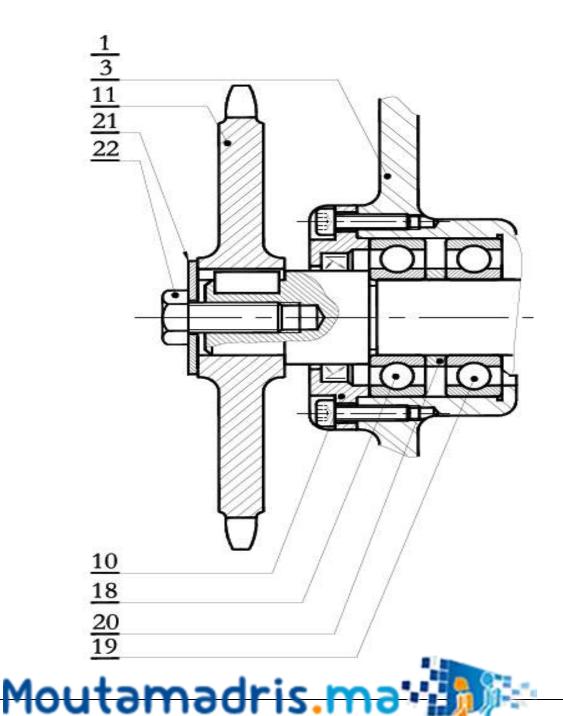
$$H = R.\theta$$

 $\theta = 20 \text{ rad}$
= 1146,13°.

Q13: Temps T (en s) nécessaire pour l'ouverture complète de la porte : 1 pt

$$T = 0.5 / 0.163 = 3.06 s.$$

الصفحة 4 NR 46 الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة – مادة: علوم المهندس – شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية


Q14: <u>Dessin à compléter</u>:

Dessin de la vis : 1 pt
Logement de la vis : 1 pt
Rondelle plate : 0.5 pt
Clavette parallèle : 1 pt

Hachures: 0.5 pt

Dimensions respectées: 1 pt

Rainure de la poulie

NR 46

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q15: Expression de la puissance totale P_t : 2 pts

On a: $P_t = 3U^2/R_c$

Q16: Valeur de la résistance R_c : 2 pts

 $R_c = 3U^2/P_t$ A.N: $R_c = 12 \Omega$.

Q17: Valeurs efficaces des courants J et I:

2 x 1.5 pt

J = U/Rc A.N: $J \approx 33,33$ A

et I = √3.J <u>A.N :</u> I ≈ 57,74 A

Q18: Valeur de la puissance réactive Q_t :

Les résistances n'absorbent pas de puissance réactive donc $Q_t = 0$ VAR.

Q19: Vitesse de synchronisme n_s et glissement q : 2×1.5 pt

 $n_s = f/p$ A.N: $n_s = 1000 \text{ tr/mn}$.

 $g = (n_s - n) / n_s = A.N : g = 3 \%.$

Q20: Puissance active P_a absorbée par le moteur : 1.5 pt

 $P_a = \sqrt{3}.U.I.\cos\phi$ A.N: $P_a \approx 8591$ W.

Q21: Pertes par effet Joule **P**_{Js} dans le stator : 1.5 pt

 $P_{Js} = RI^2$ A.N: $P_{Js} \approx 192$ W.

Q22: Puissance électromagnétique P_{Tr} transmise au rotor : 1.5 pt

 $P_{Tr} = P_a - P_{Js} - P_{fs}$ A.N: $P_{Tr} \approx 8193$ W.

Q23: Pertes par effet Joule **P**_{Jr} dans le rotor : 1.5 pt

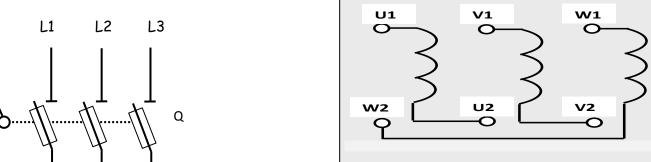
> $P_{Jr} = g P_{Tr}$ $A.N: P_{Jr} \approx 246 W.$

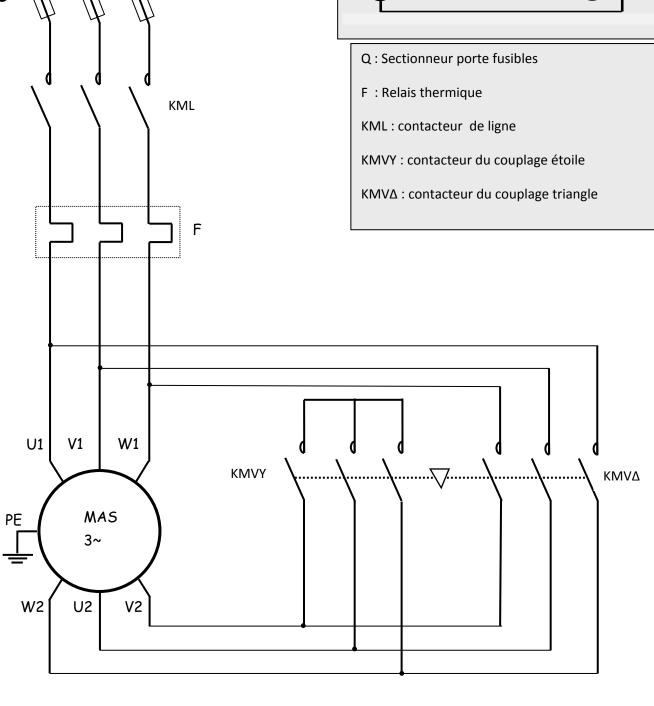
Q24: Couple électromagnétique **C**_e: 2 pts

 $C_e = 30 P_{Tr} / \pi. n_s$ A.N: $C_e \approx 78,24 W.$

Q25: Rendement η_{MV} du moteur 2 pts

 $\eta_{MV} = (P_a - P_{Js} - P_{fs} - P_{Jr} - p_m) / P_a$ A.N: $\eta_{MV} \approx 87, 3 \%$.

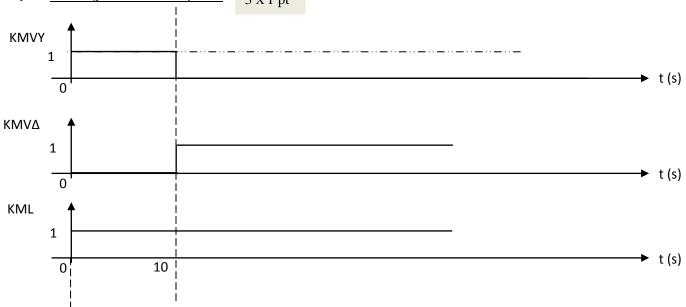

الصفحة 6 NR 46 الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة – مادة: علوم المهندس – شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية


Plaque à bornes :

Q26: Schéma du circuit de puissance à compléter

3 pts

Schéma du circuit de puissance :



NR 46

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q27: <u>Chronogrammes à compléter</u>: 3 X 1 pt

Q28: On montre que
$$U_M = (S_A - S_B)(T_X - T_C)$$
: 2 pts
$$U_M = S_C(T_{ACQ} - T_C) + S_B(T_C - T_X) + S_A(T_X - T_C) + S_C(T_C - T_{ACQ})$$

$$U_M = S_CT_{ACQ} - S_CT_{ACQ} - S_BT_C - S_BT_X + S_AT_X - S_AT_C + S_CT_C - S_CT_{ACQ}$$

$$U_M = S_A(T_X - T_C) + S_B(T_C - T_X) = (S_A - S_B)(T_X - T_C)$$

Q29: Expression de la tension
$$U_M$$
: 1 pt $U_M = S_{AB}T_X$

Q30: Nouvelle expression de la tension
$$U_M$$
: 1.5 pt

$$U_{\mathsf{M}} = U_{\mathsf{TH}} + U_{\mathsf{CJC}} = \mathsf{S}_{\mathsf{AB}}\mathsf{T}_{\mathsf{X}} - \mathsf{S}_{\mathsf{AB}}\mathsf{T}_{\mathsf{C}} + U_{\mathsf{CJC}}$$

Q31: Condition que doit vérifier la tension
$$U_{CIC}$$
 pour la compensation de T_C : 1 pt

$$S_{AB}T_X - S_{AB}T_C + U_{CJC} = S_{AB}T_X \rightarrow U_{CJC} = S_{AB}T_C$$

Q32: Expression de la tension
$$U_{TC}$$
: 1.5 pt

$$U_{TC} = U_{TH} + U_{LM} = S_{AB}T_X - S_{AB}T_C + S_{LM}T_C$$

Q33: Condition à réaliser pour avoir
$$U_{TC} = S_{AB}T_X$$
: 1.5 pt

$$U_{TC} = S_{AB}T_X - S_{AB}T_C + S_{LM}T_C = S_{AB}T_X \rightarrow S_{LM} = S_{AB}$$

D'après la courbe K,
$$S_{AB} \approx 40 \mu V/^{\circ}C$$

الصفحة 8 NR 46 الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

0.5 pt + 1 pt

Q35: Type de filre et valeur du module ||A|| pour les basses fréquences ($f \ll f_0$):

Filtre passe-bas et $\|\underline{\underline{A}}\| \approx 1$

Q36: Expression approchée de U_F : 1.5 pt

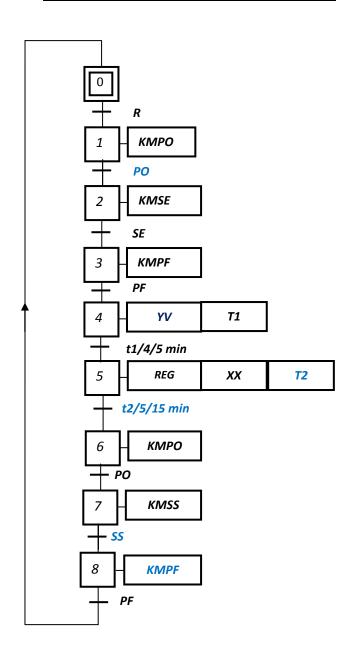
 $U_F \approx U_{TC}$

Q37: Expressions de \mathbf{A}_{V} : 1.5 pt

 $A_V = (1 + R_5/R_4)$

Q38: Nouvelle expressions de A_v 1.5 pt

 $A_V = S_M/S_{AB}$


Q39: Valeur de \mathbf{A}_{V} pour avoir une sensibilité de $\mathbf{5}$ $\mathbf{mV/^{\circ}C}$: 2 pts

 $A_V = 5000/40 = 125$

Q40: Valeur de U_c pour une température T_x de **850 °C**: 1 pt

 $U_C = 850 \times 5.10^{-3} = 4.25 \text{ V}$

Q41: GRAFCET de point de vue commande à compléter :

6 x 0.5 pt

Q42: Mots de commande en hexadécimal : 1 pt

W1=03h et W2= 05h

NR 46 10

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2015 - عناصر الإجابة - مادة: علوم المهندس - شعبة العلوم والتكنولوجيات: مسلك العلوم والتكنولوجيات الكهربائية

Q43: <u>Valeur entière du compteur correspondant à la temporisation de « 10 s »</u> : 2 pts

N=int(10⁷/65536)=152

Q44: Programme correspondant:

5 x 1 pt

RG	0x004	Adresse d'interruption	
RG		Adresse d'interruption	
	;Sauvegarde des registres W et STATUS		
CF	INTCON, GIE		
10VWF	SAVE_W	Sauvegarde de W	
WAPF	STATUS, W	SWAP de STATUS avec résultat dans W	
10VWF	SAVE_STATUS	Sauvegarde de STATUS swappé	
;Traitement de l'interruption de TMR0			
ECFSZ	Tempo_Compt		
ОТО	Reg_Restore		
SF	Tempo_Etat, 0		
10VLW	Tempo_Val		
10VWF	Tempo_Compt		
	;Restaurer les regis	tres W et STATUS	
WAPF	SAVE_STATUS, W	SWAP ancien STATUS avec résultat dans W	
10VWF	STATUS	Restauration de STATUS	
WAPF	SAVE_W, F	SWAP ancien W avec résultat dans SAVE_W	
WAPF	SAVE_W, W	SWAP W avec résultat dans W	
ETFIE		Retour d'interruption	
1 1	IOVWF ECFSZ OTO SF IOVLW IOVWF WAPF WAPF WAPF	SAVE_STATUS	

