مباراة وولوج كلية الطب والصيدلة بفاس
السنة الجامعية: 2016-2017

ملاحظات مهمة

م 1 - تتكون المباراة من أربع اختبارات، مدة كل اختبار 30 دقيقة بنفس المعامل (A).
م 2 - لكل سؤال خمسة أجوبة مفترضة (A-B-C-D-E) مع العلم أن جواب واحد فقط هو الصحيح.
م 3 - لا تتوفرون إلا على ورقة واحدة للإجابة.
م 4 - يمكنك الإجابة بوضع علامة في خانة الجواب الصحيح.
م 5 - لا توجد أي درجة موجبة للإقصاء.

مواصفات الاختبارات

اختبار 1: الرياضيات: الأسئلة من 1 إلى 16.
اختبار 2: الفيزياء: الأسئلة من 17 إلى 32.
اختبار 3: الكيمياء: الأسئلة من 33 إلى 48.
اختبار 4: العلوم الطبيعية: الأسئلة من 49 إلى 64.

للإشارة، فإنه بالنسبة لكل اختبار سيتم تنفيذ الأسئلة السبع الأولى على 2 نقطة، والأسئلة الست الموالية على 0.75 نقطة والالتبسة الثلاث الأخيرة على 0.5 نقطة.
اختبار 1: الرياضيات: الأسئلة من 1 إلى 16

السؤال 1 (2 نقطة): لكل عدد صحيح طبيعي \( n \) حيث \( n \geq 2 \) لدينا:

\[
C_n^3 \geq n^3, \quad A_1 \quad B \quad C \quad D \quad E
\]

\( A_n^2 = C_n^2 \)
\( A_n^2 < C_n^2 \)

\( A_n^2 = \frac{C_n^2}{2!} \)
\( A_n^2 \leq C_n^2 \)

\( f : [0, +\infty) \rightarrow IR \)

\( x \mapsto e^x - \ln(x) + \sqrt{x} - x^2 + \frac{x-1}{x+1} \)

الحل: هي الدالة المشتقة للدالة:

\( f'(x) = e^x - \frac{1}{x} + \frac{1}{3\sqrt{x^2}} - 2x - \frac{2}{(x+1)^2} - 1 \)

\( A \quad B \quad C \quad D \quad E \)

كسم 2 (2 نقطة): القيمة التكامل:

\( I = \int_0^{ln(4)} (e^{2x} - 4e^x) \, dx \)

\( -4,5 \)
\( \ln(4) \)
\( 0 \)
\( \ln(2) - 1 \)
\( e^2 - 4e \)

السؤال 3 (2 نقطة): نهاية المتتالية ذات الحد العام:

\( u_n = n + \cos\left((-1)^n n^3 - n^2 + \sqrt{n}\right) \)

غير موجودة

\( A \quad B \quad C \quad D \quad E \)

0

\( -\infty \)
\( +\infty \)
\( -1 \)
السؤال 5 (2 نقطة): حيّز تعريف الدالة العددية $f$ للمتغير الحقيقي $x$ المعروفة ب: $f(x) = e^{\frac{\ln(x)}{\sqrt{x}}-1}$ هو:

<table>
<thead>
<tr>
<th>$(-\infty, 0]$</th>
<th>$[0, 1] \cup [1, +\infty]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A$</td>
<td>$B$</td>
</tr>
<tr>
<td>$C$</td>
<td>$D$</td>
</tr>
<tr>
<td>$E$</td>
<td></td>
</tr>
</tbody>
</table>

السؤال 6 (2 نقطة): احتمال نقص المنحنى على اللقطة 20 في اختبار الرياضيات هذا، بما أنه اختار عشوائيا واحد الأجوبة في كل سؤال من الأسئلة العددية عشرة، هو:

<table>
<thead>
<tr>
<th>$\frac{1}{80}$</th>
<th>$C$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{C^2}{80}$</td>
<td>$B$</td>
</tr>
<tr>
<td>$\frac{16}{80}$</td>
<td>$D$</td>
</tr>
<tr>
<td>$\frac{1}{516}$</td>
<td>$E$</td>
</tr>
<tr>
<td>$0$</td>
<td>$E$</td>
</tr>
</tbody>
</table>

السؤال 7 (2 نقطة): العددان العقديان $z_2 = e^{-2017i} + e^{-2016i}$ و $z_1 = e^{2017i} + e^{2016i}$ موجبان قطعا $A$، سالبان قطعا $B$، مترافقان $C$، متساويان $D$، متقابلان $E$.

السؤال 8 (0.75 نقطة): حل المعادلة التفاضلية $y'' + y + 1 = 0$ الذي يحقق $y(0) = 0$ هو الدالة المعروفة على $IR$ $y(x) = (x+1)e^{-x}$ $A$, $y(x) = e^x - e^{-x}$ $B$, $y(x) = e^{-x} - 1$ $C$, $y(x) = \cos(x) - 1$ $D$, $y(x) = e^{-x}(\cos(x) + \sin(x)) - 1$ $E$. 


السؤال 9 (0.75 نقطة) : في مجموعة الأعداد الحقيقية، المعادلة 

\[(\cos(x) + i\sin(x))^5 = 0\]

تقبل حلين

A \[\square\]

B \[\square\]

C \[\square\]

D \[\square\]

E \[\square\]

السؤال 10 (0.75 نقطة) : نهاية المتتالية ذات الحد العام 

\[v_n = n^{\sqrt{n}} - n^{\sqrt{n}}\]

هي :

A \[\square\]

B \[\square\]

C \[\square\]

D \[\square\]

E \[\square\]

السؤال 11 (0.75 نقطة) : النهاية التحاسوية :

\[\lim_{x \to \infty} \frac{x^2 - 1}{x - 1}\]

A \[\square\]

B \[\square\]

C \[\square\]

D \[\square\]

E \[\square\]

السؤال 12 (0.75 نقطة) : إذا كانت 

\[f^{-1}(\ln(5)) = 0\]

فإن:

A \[\square\]

B \[\square\]

C \[\square\]

D \[\square\]

E \[\square\]
السؤال 13 (0.75 نقطة): الانحراف الطراري لفتغر عشوائني حدائي $X$ وسيطه $16$ و $n=16$ هو $p=0.5$.

$$
\sigma(X) = 4 \quad \text{A} \quad \square \\
\sigma(X) = 2 \quad \text{B} \quad \square \\
\sigma(X) = -4 \quad \text{C} \quad \square \\
\sigma(X) = 3 \quad \text{D} \quad \square \\
\sigma(X) = -2 \quad \text{E} \quad \square 
$$

السؤال 14 (0.5 نقطة): المثليتة المعروفة ب $\forall n \in \mathbb{N}, u_n = \frac{1}{n}$. حيث الرقم $2$ مكتوب $n$ مرة.

قبل نهاية $\text{A} \quad \square$
تناقصية $\text{B} \quad \square$
ثنائية $\text{C} \quad \square$
ملائية $\text{D} \quad \square$
زاوية $\text{E} \quad \square$

السؤال 15 (0.5 نقطة): المعادلة: $e^x - \ln(x) = 0$

قبل حل واحد في $[0, \infty)$ $\text{A} \quad \square$
قبل على الأقل حل في المجال $[-\infty, 0)$ $\text{B} \quad \square$
قبل حل واحد في $[0, \infty)$ $\text{C} \quad \square$
قبل حل لي في $[0, \infty)$ $\text{D} \quad \square$
لا تقبل حل في $[0, \infty)$ $\text{E} \quad \square$

السؤال 16 (0.5 نقطة): قيمة التكامل $J = \int_0^1 2(e^t + e^{-t})^2 \, dt$ هي:

$$
e^2 - e^{-2} + 4 \quad \text{A} \quad \square \\
e^{-2} - e^2 + 4 \quad \text{B} \quad \square \\
e^2 - e^{-2} - 4 \quad \text{C} \quad \square \\
e^2 + e^{-2} + 4 \quad \text{D} \quad \square \\
2 \quad \text{E} \quad \square$$
اختبار2: الفيزياء: الأسئلة من 17 إلى 32

السؤال 17 (2 نقطة) : طاقة الرابط لذراء الزئبق $^{197}Hg$ تساوي $^{199}Hg$ تساوي 1521 MeV. نعطي:

$$E_L = 1521 \text{ MeV}$$

كلية البروتون : $m_p = 1,672610^{-27}\text{Kg}$,
كلية النوترون : $m_n = 1,674910^{-27}\text{Kg}$,

$$C = 2,99792.10^8\text{m/s}$$

لـ 1 eV $= 1,6.10^{19}\text{J}$

كلية الزئبق تساوي : 

<table>
<thead>
<tr>
<th>كميات طبيعية من الزئبق</th>
</tr>
</thead>
<tbody>
<tr>
<td>327,07.10^{-27}\text{Kg}</td>
</tr>
<tr>
<td>329,77.10^{-27}\text{Kg}</td>
</tr>
<tr>
<td>337,05.10^{-27}\text{Kg}</td>
</tr>
<tr>
<td>366,15.10^{-27}\text{Kg}</td>
</tr>
<tr>
<td>385,25.10^{-27}\text{Kg}</td>
</tr>
</tbody>
</table>

السؤال 18 (2 نقطة) : يتعقب الايرانيوم $^{238}U$ عنصرًا إشعاعيًا. فيعد سلسلة من الفيكتات من نوع $\alpha$ و $\beta$ يتحول إلى نواة الرصاص $^{206}Pb$ عند زمن $2 \text{جة}$.

$$\gamma = 10^6 \text{m/s}^2; \gamma = 10 \text{cm}; M = 0,1\text{Kg}$$

$$J_\alpha = \frac{1}{2}M r^2$$

الزئبق للجسم يساوي:

$$t_s = 10,8 \text{ rad/s}^2$$

<table>
<thead>
<tr>
<th>كميات طبيعية من الزئبق</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 \alpha , 6 \beta</td>
</tr>
<tr>
<td>8 \alpha , 4 \beta</td>
</tr>
<tr>
<td>8 \alpha , 8 \beta</td>
</tr>
<tr>
<td>6 \alpha , 8 \beta</td>
</tr>
<tr>
<td>6 \alpha , 4 \beta</td>
</tr>
</tbody>
</table>

السؤال 19 (2 نقطة) : نفذ فحص غير قابل للملاحظة كتلة $M$ وشعاعها $\varphi$. يتضمن الطرف الآخرين في اختبار $\gamma$ للفيكتات للجسيم صلب $(S)$ له نفس كتلة الأسطوانة (النظر الشكل).

$$x' = 10^6 \text{m/s}^2; x' = 10 \text{cm}$$

$$J_\alpha = \frac{1}{2}M r^2$$

الزئبق للجسم يساوي:

<table>
<thead>
<tr>
<th>كميات طبيعية من الزئبق</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,8 \text{ rad/s}^2</td>
</tr>
<tr>
<td>25,5 \text{ rad/s}^2</td>
</tr>
<tr>
<td>66,6 \text{ rad/s}^2</td>
</tr>
<tr>
<td>70,8 \text{ rad/s}^2</td>
</tr>
<tr>
<td>85,5 \text{ rad/s}^2</td>
</tr>
</tbody>
</table>
السؤال 20 (2 نقطة): تدخل شحنة سالبة q بسرعة بنية V₀، منطقة يسود فيها مجال كهربائي منتظم E. حركة هذه الشحنة

\[ V_{\text{p}}(t) = \begin{cases} q < 0 & \Rightarrow V_0 \end{cases} \]

داخل المجال E تكون:

- حركة دائرية A
- حركة دائرية منتظمة B
- حركة مستقيمة منتظمة C
- حركة مستقيمة متغيرة بانتظام D
- حركة شلجة E

السؤال 21 (2 نقطة): تنشئ مكتفين متشابهين لهما نفس السعة C مركبين على التوالي. الطاقة المخزنة من طرف كل مكتف تساوي:

- نصف الطاقة التي سيختزنها مكتف ذو قمة U التي تحت نفس التوتر U
- نصف الطاقة التي سيختزنها مكتف ذو قمة U التي تحت نفس التوتر U
- نصف الطاقة (\( \frac{1}{2} \)) التي تحت نفس التوتر U

السؤال 22 (2 نقطة): تكون دائرة كهربائية من وصلة معالج تحويل U، ومكثف سعته C، ومكثف سعته R، ومكثف سعته L. وتكون شحنة Q مركبة على التوالي.

ذروة الدارة يتراوح جزيئي (t) قيمة الفعلة \( \mathcal{V} \) بواسطة فولتمتر، نقوم الفعلة للتدوارات بين مربعي ثنائيات القطب المكونة للدارة RLC:

\[ V_R = 8 \text{ V} ; \quad V_L = 9 \text{ V} ; \quad V_C = 3 \text{ V} \]

القيمة الفعلة للتدوير تساوي:

- 20V A
- 10V B
- 12V C
- 14V D
- 24V E
السؤال 23 (2 نقطة): لنكن الدارة التالية: لنغلق قاطع التيار $K$ بوضعه في الموضع (1) لشحن المكثف ذو السعة $C$ بواسطة 
$E = 10V$. 
في اللحظة $t = 0$ نغلق قاطع التيار $K$ بوضعه في الموضع (2). الطاقة الكهرومغناطيسية $E_L$ المخزنة في الوضيقة عند اللحظة $T_0$ تساوي: 
$T_0 = \frac{E_0}{6}$

\[ \begin{array}{c}
\begin{array}{c}
E = 10V \\
C = 10 \mu F \\
E_0 = 1 \mu F
\end{array}
\end{array} \]

- $E_L = 0,375mJ A$ □
- $E_L = 0,775mJ B$ □
- $E_L = 0,975mJ, C$ □
- $E_L = 1,275mJ, D$ □
- $E_L = 1,525mJ, E$ □

السؤال 24 (0.75 نقطة): تتابع تمرين 23;
الدور الخاص للدارة $T_0$ يساوي:

- $0.25ms A$ □
- $1.25ms B$ □
- $2.55ms C$ □
- $5.75ms D$ □
- $7.25ms E$ □

السؤال 25 (0.75 نقطة): نقول أن حركة مستقيمة مت باطة عندما يكون

- التسارع متعددا □
- السرعة م ملت □
- السرعة والتسارع لما نفس الاتجاه □
- السرعة والتسارع لهما اتجاهان متعاكسان □
- متجهة السرعة والتسارع متعامدان □

السؤال 26 (0.75 نقطة): نواس سبب يكون من كمية صغيرة كثائرة $m$ معلقة بطريق كش خط في الاتجاه المعاكس، وطوله $L$. ينجز

$g = 10m/s^2$
$T_0 = 2s$ 
$\mu g = 25cm .. E$ □

$115cm. A$ □
$101cm. B$ □
$85cm. C$ □
$65cm. D$ □
$25cm. E$ □
السؤال 27 (0.75 نقطة): عصر مشع يحتوي على $N_0 = 96.10^{20}$ نوية في اللحظة $t = 0$. ليكن $T$ هو عمر النصف. في اللحظة $t = 4T$ يبقى: 

- $N = 48.10^{20}$ A
- $N = 24.10^{20}$ B
- $N = 12.10^{20}$ C
- $N = 9.10^{20}$ D
- $N = 6.10^{20}$ E

السؤال 28 (0.75 نقطة): تطلق ذرف كتلة $m$ في النقطة $O$, بسرعة يدينية $V_0$ بزاوية $\alpha$ مع الخط الافق. نعمل احتمالات الهواء:

- تندم سرعة الظاهرة في قمة النجوم A
- المدى الأقصى للرمية يحصل عليه بزاوية $\alpha = 45^\circ$ B
- المسار الشمالي كيفما كانت قيمة C
- الهدفيلة نقطة السقوط تكون مع $\alpha$ D
- حركة الظاهرة حركة منتظمية E

السؤال 29 (0.75 نقطة): لتكن مجموعة مكونة من عارضة طولها $L$ وكتلتها $m$, وكرة شماعها $r = \frac{L}{4}$ وكتلتها $m$، وهو مركز قصور المجموعة (العارضية + الكرة) فان $OG$ يساوي:

- $OG = \frac{L}{3m}$ A
- $OG = \frac{L}{2}$ B
- $OG = \frac{3L}{4}$ C
- $OG = L$ D
- $OG = \frac{5L}{4}$ E
السؤال 30 (0.5 نقطة): معامل الانكسار لوسط شفاف بالنسبة لضوء أحادي اللون هو:

п = CV \text{ A} \quad \frac{C^2 V}{\text{ B}} \quad \frac{V}{C} \text{ C} \quad \frac{C}{V} \text{ D} \quad V^2 C \text{ E}

السؤال 31 (0.5 نقطة): يتحرك جسم بسرعة ثابتة V = 20m/s على منحنى دائري شعاعه R = 10m. التسارع المنظم

\[ a_n = 200m/s^2 \text{ A} \quad a_n = 100m/s^2 \text{ B} \quad a_n = 40m/s^2 \text{ C} \quad a_n = 4m/s^2 \text{ D} \quad a_n = 2m/s^2 \text{ E} \]

السؤال 32 (0.5 نقطة): موجة ضوئية طولها في الفراغ \( \lambda_0 \) في وسط شفاف معامل انكساره n، يصبح طول هذه الموجة هو:

\[ n \lambda_0 \text{ A} \quad n^2 \lambda_0 \text{ B} \quad \lambda_0^2 \text{ C} \quad \frac{n}{\lambda_0} \text{ D} \quad \frac{\lambda_0}{n} \text{ E} \]
اختبار 3: الكيمياء: الأسئلة من 33 إلى 48

السؤال 33 (2 نقطة): قيمة ثابتة التوازن المعرونة بمعادلة التفاعل الكيميائي.

- ترتبط بالحالة البدنية للمجموعة الكيميائية. A
- تحدد قيمة المذيب في التفاعل. B
- تختلف عن خارج التفاعل عند التوازن. C
- مول/لتر. D
- ترتبط بدرجة الحرارة. E

السؤال 34 (2 نقطة): انطلاقا من المذدوجتين Cu²⁺/Cu وي Fe²⁺/Fe محول أيوني يتكون من Cu²⁺ و Fe²⁺ حدد التمثيل الاصطحابي المكون من المذدوجين علما أن الألكترونات تنتقل من الكربون الحديد إلى الإلكترون النحاس.

\[ \begin{array}{c}
\text{Fe(s)} / \text{Fe}^{2+} (aq) // \text{Cu}^{2+} (aq) / \text{Cu(s)}^0 \\
\text{Cu}^{2+} (aq) / \text{Fe}^{2+} (aq) // \text{Fe(s)} / \text{Cu(s)}^0 \\
\text{Cu}^0 / \text{Cu}^{2+} (aq) / \text{Fe}^{2+} (aq) \\
\text{Fe}^{2+} (aq) / \text{Cu}^{2+} (aq)
\end{array} \]

السؤال 35 (2 نقطة): تعتبر التفاعل :

\[ \text{A}_1 (aq) + \text{B}_2 (aq) = \text{B}_2 (aq) + \text{A}_1 (aq) \]

الذي يعتمد على المذدوجتين مضام ثابتة ك كث اث ل التوازن على التوازن A/B و A/B1 و K_{a1} و K_{a2} ثابتة التوازن للتفاعل أعلاه تحدد أن:

- K = K_{a1} / K_{a2} بالانغلاق. A
- K = K_{a2} / K_{a1} بالانغلاق. B
- K = K_{a1} * K_{a2} بالانغلاق. C
- بدون الاعتماد على المذدوجتين المساهمتين في التفاعل. D
- K = K_{a1} / K_{a2} بالانغلاق. E

السؤال 36 (2 نقطة): نسبة التقدم النهائي لتفاعل الحمض بالبماه

- تكون أعلى كلما كانت قيمة Kp الخاص بالمذدوجة حمض-قاعدة أكثر. A
- تكون أعلى كلما كانت قيمة Kp الخاص بالمذدوجة حمض-قاعدة أكبر. B
- تكون أقل كلما كانت قيمة Kp الخاص بالمذدوجة حمض-قاعدة أكبر. C
- تكون أعلى كلما كانت قيمة Kp الخاص بالمذدوجة حمض-قاعدة أصغر. D
- لا تتأثر بقيمة ثابتة الحموضة. E
السؤال 37 (2 نقطة): تفاعل الاسترة المعبر عنه بالتفاعل التالي:
كحول + حمض كبريتيديك = استير + ماء

يعتبر تفاعل سريعا وتماما A □
يعتبر تفاعل سريعا ومحدودا B □
يعتبر تفاعل ناشرا للحرارة C □
مردود التفاعل مرتب صنف الكحول المستعمل D □
قيمة الإنتاجية ترتفع بتواجد الحفاز. E □

السؤال 38 (2 نقطة): حدد تفاعل الأكسدة والاختزال

\[ \text{AgCl}_\text{(s)} = \text{Ag}^+ \text{(aq)} + \text{Cl}^- \text{(aq)} \] A □
\[ \text{C}_\text{(s)} + 2\text{H}_2\text{(g)} \rightarrow \text{CH}_4\text{(g)} \] B □
\[ 6 \text{MnO}_4^- \text{(aq)} + \text{I}^- \text{(aq)} + 6 \text{HO}^- \text{(aq)} = 6 \text{MnO}_4^{2-} \text{(aq)} + \text{IO}_3^- \text{(aq)} + 3 \text{H}_2\text{O} \text{(l)} \] C □
\[ \text{H}_3\text{O}^+ \text{(aq)} + \text{HO}^- \text{(aq)} = 2 \text{H}_2\text{O} \text{(l)} \] D □
\[ \text{CH}_4 \text{(g)} + 2\text{O}_2 \text{(g)} \rightarrow \text{CO}_2 \text{(g)} + 2 \text{H}_2\text{O} \text{(l)} \] E □

السؤال 39 (2 نقطة): حدد الهيدروكربون المشبع الذي يمكن أن يتفاعل مع ثنائي الأوكسيجين في تفاعل الاحتراق التالي:
\[ 2\text{C}_x\text{H}_y + 7\text{O}_2 \rightarrow 4\text{CO}_2 + 6 \text{H}_2\text{O} \]

\[ \text{CH}_4 \] A □
\[ \text{C}_2\text{H}_6 \] B □
\[ \text{C}_3\text{H}_8 \] C □
\[ \text{C}_4\text{H}_{10} \] D □
\[ \text{C}_5\text{H}_{12} \] E □

\[ \text{HPO}_4^{2-} / \text{PO}_4^{3-} \] للمذودة \( K_a \) للمذودة

تكون أكبر من ثابتة المذودة A □
\[ \text{H}_2\text{PO}_4^- / \text{HPO}_4^{2-} \] للمذودة

 две B □
\[ \text{H}_3\text{PO}_4 / \text{H}_2\text{PO}_4^- \] للمذودة

تكون أكبر من ثابتة المذودة. C □
\[ \text{H}_2\text{PO}_4^- / \text{HPO}_4^{2-} \] للمذودة

غير محددة. D □

تساوي صفر. E □
السؤال 41 (0.75 نقطة): حدد x و y للحفاظ على توازن معادلة الأكسدة والاختزال الناتجة عن التفاعل بين المزدوجتين في المجال القاعدي. المعبر عنها بالمعادلة التالية:

\[2MnO_4^- + xH_2O + 3CN^- = 2MnO_2(s) + 3yCNO^- + 2OH^-\]

. x = 0 et y = 0 A 
. x = 1 et y = 2 B 
. x = 1 et y = 1 C 
. x = 2 et y = 2 D 
. x = 2 et y = 1 E 

السؤال 42 (0.75 نقطة): حدد مركب الحمض الكربوكسيلي من بين المركبات التالية:

. CH_3CHCH_2 A 
. CH_3CH_2CH_3 B 
. CH_3CH_2CH_2OH C 
. CH_3CH_2COOH D 
. CH_3CH_2COOCH_3 E 

السؤال 43 (0.75 نقطة): تفاعل المعايرة يجب أن يكون تاما ويطني.
. يكون انتقانا و تاما وسريعا B 
. يكون مستهلكا للمحلول المعاير C 
. يكون مستهلكا للمحلول المعاير به D 
. يكون متوازنا عند الحالة البدنية E 

السؤال 44 (0.75 نقطة): نعبر 0.1 mol/L تركيزه NH_3(aq) pK_b=4.76 وله 0.1 mol/L HCl لحل على

. 9,2 A 
. 4,8 B 
. 11,8 C 
. 2,2 D 
. 1 E 

السؤال 45 (0.75 نقطة): إذا كان تركيز محلول الحمض الفوسفوري H_3PO_4 في نفس المحول فكم يساوي تركيز أيون H_3O^+ في نفس المحول

. 0,3 mol/L A 
. 3 mol/L B 
. 0,1 mol/L C 
. 0,03 mol/L D 
. 0,9 mol/L E 

. HCl
السؤال 46 (0.5 نقطة) : نتوفر بدئيا على محلول سكري تركيزه 1g/L إذا أخذنا 100 mL من هذا محلول وأضافنا له 400 mL من الماء المقطر. فكم يصبح تركيز محلول المخفف؟

A 100 mg/L
B 200 mg/L
C 250 mg/L
D 300 mg/L
E 500 mg/L

السؤال 47 (0.5 نقطة) : تفاعل اكساء احتكار تفاعل يتم خلاله

A انتقال البروتونات بين المتفاعلات.
B انتقال أيونات بين المتفاعلات.
C انتقال الإلكترونات بين المتفاعلات.
D انتقال أيونات H⁺ بين المتفاعلات.
E انتقال أيونات OH⁻ بين المتفاعلات.

السؤال 48 (0.5 نقطة) : يمكن لذرات نفس العنصر الكيميائي أن تختلف

A بعد الإلكترونات.
B بعد البروتونات.
C بعد البروتونات وبعد الإلكترونات.
D بعد النترونات وبعد البروتونات.
E بعد النترونات.
اختبار 4: العلوم الطبيعية: الأسئلة من 49 إلى 64

السؤال 49 (2 نقاط): الزواج بين رجل مصاب بالضمور البصري [A] وأمراه عادية [a]، يعني دائما خلفا مكونا من بنات مصابات بهذا المرض وأبناء ذكور عاديين. هذه النتيجة تدل على أن:

A) الضمور البصري مرتبطة بالصبغي الجنسي X.
B) الضمور البصري مرتبطة بالصبغي الجنسي Y.
C) الجيل المسؤول عن هذا الضمور متحل.
D) النطع الوراثي للذر XY وناتج هو XAY.
E) النطع الوراثي للبنات المصابات هو XAXA.


A) النتائج المحصلة عليها في الجيل الأول ليست متائية لقاعدة الأولى لاندلي.
B) النتائج المحصلة عليها في الجيل الثاني تطابق حالة هجينة ناقلة ذات مورونتين مرتبطتين.
C) النتائج المحصلة عليها في الجيل الثاني تطابق حالة إنتاجية ذات مورونتين مستقلتين.
D) نقص النثرة سوف يحصل عليها إذا تم الزواج بين ناتئ من الجيل الأول وذبة نثرة صمم أو تيفينثي النثرة التقليد.
E) المسافة الفاصلة بين المورونتين المسؤولين عن الصفات المدروسة هي 40 CMg.

السؤال 51 (2 نقاط): انتقال الصفات الوراثية:

في حالة تساوي السيادة، النزاع بين سلالتين نقيتين يعطى 4 مظاهر خارجية في الجيل الثاني.

A) عند الأم، السماح، الجراثيم، يومناً مطابقة الأم، وف. B) عند الأم، السماح، الجراثيم، يومناً مطابقة الأم، وف.
C) في حالة الجيل الثاني، استقلال الصفات، انتقال الصفات الوراثية لا يخفى لقوانين مانديل.
D) الفرد المختار الإقراض له حليب مختفي من الأصوات الموروثة، ويتبج نوع واحدة من الأصوات.
E) الخريطة العملية تمثل تموض الموروثات بعضها بالنسبة للبعض على صنيعات مستقلة.

السؤال 52 (2 نقاط): فيروس فقران المناقة المكتسبة (VIH).

A) يعتبر من الفيروسات التهابية لأنه يحتوي على ناكس عكسي يخول إلى ADN.
B) أثناء العدوى ب VIH يطلب تدمير المفايارات T مشتركة البروتين GP120 المنصفbrook GP120 T، T8 T وناتج البروتينات T، T، GP120 T، T8 T وناتج البروتينات T، T، GP120 T، T8 للخلايا المفايارة.
C) دواء فقران المناقة المكتسبة يؤدي إلى ظهور أعراض التهابية نادرة بسبب اختفاء جميع أنواع المفايارات.
السؤال 53 (2 نقطة) : التنفس الخلوي.

السلسلة التنفسية تؤدي إلى انخفاض pH ، ناتج عن رفع تركيز أيونات H⁺ داخل الماتريس.
A □
B □
C □
D □
E □

الفرق في تركيز أيونات H⁺ بين الماتريس والجزء البيولوجي يمكن من إنتاج ATP.
A □
B □
C □
D □
E □

الإنتاج ATP الذي يتم نقل الإلكترونات عبر السلسلة التنفسية، يتطلب وجود الأكسجين.
A □
B □
C □
D □
E □

إذا كان مول واحد من ATP انحراف بالنصف الأول 36KJ، والطاقة الإجمالية المتخرجة من مول واحد من الكليورك هي 2860KJ، فإن المردود الطاقي للتنفس سوف يكون 30%.
A □
B □
C □
D □
E □

على مستوى حلقة كريس، يتم احتراز الأوكسجين وRAND المكسود.
A □
B □
C □
D □
E □

السؤال 54 (2 نقطة) : التنفس الخلوي.

في السلسلة التنفسية، الأكسدة الكاملة لجزءة FADH₂ تعطي 3ATP والأكسدة الكاملة لجزءة NADH تعطي 2ATP.
A □
B □
C □
D □
E □

تحوّل حمض البيروفيك إلى أسيتيل كونازيم A يتم مع تفاعلات حلقة كريس.
A □
B □
C □
D □
E □

الميتوكريبت هي مضللة خطأ الوحيدة التي تنتج الطاقة المتخرجة من أسيتيل كونازيم A وحلقة كريس يمكن أن تتأثر في الماتريس.
A □
B □
C □
D □
E □

استعمال جزءة واحدة من الكليورك من طرف الخلية تحرّر 38ATP و CO₂.
A □
B □
C □
D □
E □

السؤال 55 (2 نقطة) : التقلص العضلي.

يتطلب التقلص العضلي كسائر الأنشطة الخلوية، استعمال ATP بكمية غير متواصلة.
A □
B □
C □
D □
E □

مرحلة التقلص العضلي تدوم وقتاً أطول من مرحلة الارتخاء.
A □
B □
C □
D □
E □

الحلقة تؤدي إلى تكوين ألكترنات الميوزيتين والتنابين.
A □
B □
C □
D □
E □

توجد أيونات Ca²⁺ ليس ضرورية لإرتباط رؤوس الميوزيتين بنايف الهالوكين.
A □
B □
C □
D □
E □

يمكن تفاعل خيالات الأنيتين والموزيتين من تحويل الطاقة المحررة خلال حلقة ATP إلى طاقة ميكانيكية.
A □
B □
C □
D □
E □

السؤال 56 (0.75 نقطة) : الأمراض الوراثية.

المرض الهزال العضلي مست齁 ومرتبط بالصبغي الجنسي X.
A □
B □
C □
D □
E □

المرض التليف الكيسي سائد وغير مرتبط بالجنس.
A □
B □
C □
D □
E □

المنغولية، شدود صبغي غير مرتبط بالجنس وعدد الصبغيات في حالة هذا المرض يساوي 45.
A □
B □
C □
D □
E □

الانتكازية مرض نوراثي سائد مرتبط بالصبغي الجنسي.
A □
B □
C □
D □
E □

متلازمة كلينتون مرتبطية يوجد صبغي جنسي زائد وتصيب أفراداً من جنس ذكري أو أنثوي.
A □
B □
C □
D □
E □
السؤال 57 (0.75 نقطة): خلال الإستجابة المناعية الخلوية

- يتم هضم الخلايا المعنفة من طرف كريات لمناعة قاتلة B بعد التعرف عليها. 
- تتم تمرير مورثات CMH يوجد عدة حلقات، نتائج عن حدوث ظاهرة العبور والطفقات. 
- الكريات المحمّرة تنتمي إلى خلايا دفاع المناعة. 
- يتم إفراز الانترولوكين من طرف الكريات المضادة إلى T T, T و. 
- مستقبل T هو بروتين دهن غشائي، موجود على مستوى الكريات المضادة إلى T.
الإجابة: D

السؤال 58 (0.75 نقطة): الانقسام الخلاوي.

- الانقسام الخلاوي هو مجموعة إنقسامات متتالية، الأول عادي، والثاني منصف.
- الانقسام الخلاوي ينتج عنه أربعة أشواط متطابقة A. الصبغة الصبغية
- الاستخدامات البيولوجية يتم تحول سكين بين الإنقسامين، تم فيها ضغوط ADN. 
- البور الصغري يؤدي إلى تخلخل بسيط صغير بين الصبغات المماثلة ويعيد في الدور التمهيدي الأول. 
- التخلخل الصغري هو افراز عشوائي للصبغات المماثلة خلال الدور التمهيدي الأول.
الإجابة: C

السؤال 59 (0.75 نقطة): الإنقسام غير المباشر.

المرحلة الخلوي تتكون من مرحلة السكين، مرحلة الإنقسام غير المباشر ومرحلة إنقسام الستيولازم وتختلف من 

- مرحلة السكين تأتي بين إنقسامين غير مباشرين وتسقط بمرور الدورة الخلوي. 
- الإنقسام غير المباشر كالانقسام الخلاوي، يمكنه إنتاج أملاح أتمحاط من خليا م. 
- يمكن الإنقسام غير المباشر من نقل الخث العضلي من خليا إلى أخرى عن طريق الصبغات. 
- الإنقسام غير المباشر يتم بطريقة متطابقة عند الخلايا الحيوانية والنباتية.
الإجابة: A

السؤال 60 (0.75 نقطة): الهندسة الوراثية.

- يستنتج نقل مورثات إلى بكتيريا، عزل ودمج المورثة المرغوب فيها، مباشرة في البرنامج الوراثي للبكتيريا.
- لا يمكن عزل المورثة المرغوب بها من خليا، إلا يقطع ADN بواسطة أنزيمات الفصل. 
- الهندسة الوراثية تستعمل لإنتاج هورمون ذات طبيعة بروتينية.
- تقنيات الهندسة бумаوية لا مردوثة بعد إلى إنتاج نباتات قادرة على مقاومة الجراحات الضارة. 
- المخزونات هوية وحدات صناعية يتم فيها زرع البلاسميدات التي تم من إنتاج البروتينات المرغوب فيها.
الإجابة: B
السؤال 61 (0.75 نقطة): المادة الوراثية.

المادة الوراثية عند الخلية ذات النواة غير الحقيقية هي جزئية من ADN، تنتمي في النواة على شكل صبغي.

A □ لإنجاز الخرائط الصبغية، يجب استخدام مادة الكلاشتين التي تتيح تكاثر الخلايا.

B □ يختلف عدد الصبغيات عند أفراد نفس النوع وكذاك من نوع إلى آخر.

C □ في الخلايا ذات النواة الحقيقية، جزئية ADN توجد مطلقة بعضنات على شكل نيكليوزومات.

D □ التحليل الكيميائي تبين أن جزئية ADN مكونة من أربعة قواعد أوزونية وسكر الريبوز وحمض فسفروي.

E □

السؤال 62 (0.5 نقطة): مضاعفة ADN

A □ مضاعفة ADN تحتاج أن يرمي واحد وهو بوليميراز.

B □ خلال مضاعفة ADN، تكون عملية الإستثمار متواصلة بالنسبة لللولب 5’-3’ ومتقطعة بالنسبة لللولب.

C □ بوليميراز، مركب أنزمي يعمل على تركيب لولب جديد ينطوي من لولب قديم في اتجاه 5’-3’.

D □ عند الخلية ذات النواة غير الحقيقية، تبدأ مضاعفة ADN في العديد من أماكن الصبغي البكتيري.

E □ يمكنها أن تتم على النحو الملاحظ، النصف المحافظ أو البديدي.

السؤال 63 (0.5 نقطة): الترجمة

A □ تعتبر البروتين تعبيراً للخبر الوراثي المتضمن في مورثة ARN

B □ الرمز الوراثي بين العلاقة بين وحدات ARNm والحمض الأميني.

C □ تريبند البروتينات داخل السيتوبلازم ووجود ADN داخل النواة، يؤكد وجود علاقة مباشرة بين المورثة والبروتين.

D □ تريبند البروتينات يتم خلال النسخ والترجمة داخل النواة.

E □ نقل الأحماض الأمينية من طرف ARN، خلال مرحلة الترجمة، لا يحتاج إلى طاقة.

السؤال 64 (0.5 نقطة):

A □ خلخل الطور (S)، نسخ ADN يمكن جزيئات ARNm التي تعزى بدورها بروتينات.

B □ في الخلايا، تجميل التكليبات في جزئية ARN على شكل لولب مضاعف.

C □ عند الفيروسات، يمكنها تشكيل دعامة الخيل الوراثي.

D □ يركز على مستوى الريبوزومات داخل النواة ARNm

E □ كباقي الأحماض النووية الريبوزية، لا يحتوي على القاعدة الأزوتواية تيمين.