المعهد الوطني للبريد والمواصلات السلكية واللاسلكية Institut National des Postes et Telecommunications

CONCOURS D'ACCES EN PREMIERE ANNEE DU CYCLE D'INGENIEURS D'ETAT

(29-06-2000)

Epreuve de Mathématiques
(Durée: 3H00)

Avertissement:

- L'appréciation des copies tient compte de la rigueur, de la clarté des raisonnements et de la présentation.
- L'utilisation de calculatrices est strictement interdite.

EXERCICE 1:

- 1) Montrer que A est diagonalisable et déterminer une base B = (e₁, e₂, e₃, e₄) permettant la diagonalisation de A de sorte que les coordonnées des e_i soient parmi 0, 1 et -1.
- 2) a) A est elle inversible?
 - b) Calculer A².
 - c) Etudier la diagonalisation de A² à partir de celle de A et retrouver le résultat précédent
 - d) En déduire l'expression générale de An pour n entier.
- 3) a) On désigne par E₁, E₂ les sous-espaces propres de A. Déterminer les matrices P₁ et P₂ des projecteurs de IR⁴ (respectivement) sur E₁ parallèlement à E₂ et sur E₂ parallèlement à E₁ relativement à la base canonique de IR⁴.
 - b) Calculer, pour i,j dans $\{1,2\}$, P_iP_j et $\sum_{i=1}^{2} P_i$.
 - c) Ecrire les matrices de ces projecteurs dans la base B.
 - d) En déduire que $A = \sum_i \lambda_i P_i$ où λ_i est la valeur propre correspondant au sous-espace propre E_i .
 - e) Retrouver ainsi l'expression de Aⁿ.

EXERCICE 2

L'espace vectoriel euclidien orienté E de dimension 3 est rapporté à une base orthonormée directe (i,j,k). Un vecteur w de composantes (a,b,c) étant donné, on considère l'application qui, à tout vecteur v de E, associe le vecteur $T(v) = v \wedge w$.

- I) a) Montrer que T est un endomorphisme de E.
 - b) Ecrire la matrice M de T par rapport à la base (i, j , k).
 - c) Montrer que l'opérateur adjoint T* de T vérifie T* = T.
 - d) Calculer T2 et exprimer T3 en fonction de T.
 - e) Déterminer le noyau de T et l'image de T,.
- II) Application: on prend $a = \frac{-1}{3}$, $b = c = \frac{2}{3}$.
 - a) Montrer que les vecteurs $U = \frac{1}{3}(2i j + 2k)$, $V = \frac{1}{3}(2i + 2j k)$ forment une base orthonormée de ImT.
 - b) Montrer que (U, V, w) est une base orthonormée directe de E
 - c) Calculer la matrice de T par rapport à la base (U ,V , w)
 - d) Montrer que 0 est l'unique valeur propre réelle de T .
- III) Soit d un réel non nul
 - a) Montrer que T + dI est inversible
 - b) On considère l'endomorphisme R_d de E tel que $R_d = (T+dI)^d (-T+dI)$ où I est l'endomorphisme unité de E. Montrer que la matrice N_d de R_d par rapport à la base (i,j,k) est orthogonale .
 - c) Prouver que, pour w fixé, toutes les matrices N_d admettent un vecteur propre en commun.

EXERCICE 3

Soient f et g les fonctions d'une variable réelle x définies par

$$f(x) = \int_0^1 t^{-x} \sqrt{1+t} dt$$
, $g(x) = \int_0^1 \frac{t^{1-x}}{\sqrt{1+t}} dt$

- 1) a) Déterminer le domaine de définition D de la fonction f.
 - b) Donner le sens de variation de f.
 - c) Quelles sont les limites de f aux bornes de D?
 - d) Déterminer un équivalent de f(x) quand x tend vers 1 dans D

(On pourra introduire la différence $\sqrt{1+t}-1$).

- e) On suppose x <0. En utilisant une intégration par parties, établir une relation entre f(x) et f(x + 1).</p>
- f) Calculer f(0), f(-1), f(-1/2) et f(1/2).
- 2) Déterminer le domaine de définition de la fonction g .
- 3) On fixe $x \in]-1,1[$.
 - a) Soit n un entier naturel .On pose $I_n = \int_0^1 (-\ln t)^n dt$. Montrer que $I_n = n!$.
 - b) Soit $\alpha \in]0,1]$. Montrer que

$$\int_{\alpha}^{t} \frac{t^{1-x}}{\sqrt{1+t}} dt = \sum_{k=0}^{+\infty} \left(\int_{\alpha}^{t} \frac{(-\ln t)^{k} t}{\sqrt{1+t}} dt \right) \frac{x^{k}}{k!}$$
 (Justifier en particulier l'existence de cette somme).

c) On pose pour $\alpha \in]0,1]$: $g_n(\alpha) = \left(\int_{\alpha}^{1} \frac{(-\ln t)^n t}{\sqrt{1+t}} dt\right) \frac{x^n}{n!}$

Montrer que la série $\sum g_n$ converge uniformément sur]0, 1].

- d) En déduire une expression de g(x) comme somme d'une série entière de la forme $\sum a_n x^n$.
- 4) a) Pour $x \in D$, exprimer f(x) en fonction de g(x).
 - b) Trouver un équivalent de f(x) quand x tend vers $-\infty$.
 - c) Montrer que f'admet un développement en série entière dont on précisera le rayon de convergence.

EXERCICE 4

Soit f une fonction réelle d'une variable réelle, de classe C^1 , et vérifiant $\lim_{x\to -\infty} x^2 f(x) = \lim_{x\to +\infty} x^2 f(x) = \lim_{x\to -\infty} x^2 f'(x) = \lim_{x\to +\infty} x^2 f'(x) = 0$

- 1) Prouver que la fonction $f_0: x \to e^{-x^2}$ vérifie les hypothèses ci-dessus.
- 2) On pose pour tout réel y: $\phi(y) = \int_{-\infty}^{+\infty} f(x)e^{-ixy}dx$.
 - a) Donner le domaine de définition de φ (c'est à dire l'ensemble des valeurs de y pour lesquelles l'intégrale considérées converge).
 - b) Que peut-on dire de ϕ lorsque f est paire ? impaire ?
- 3) On pose $g(x) = \sum_{k=0}^{+\infty} f(x 2k\pi) + \sum_{k=1}^{+\infty} f(x + 2k\pi)$.
 - a) Montrer que g est 2π périodique et de classe C¹ sur $[0,2\pi]$.
 - b) Exprimer à l'aide de φ les coefficients de Fourier de g.

