المعهد الوطني للبريد و المواصلات المعهد العامية INSTITUT NATIONAL DES POSTES ET TELECOMMUNICATIONS

CONCOURS D'ACCES EN PREMIERE ANNEE DU CYCLE D'INGENIEURS D'ETAT 28-06-2001

Epreuve de MATHEMATIQUES (Durée : 3Heures)

Avertissement:

- -L'appréciation des copies tient compte de la rigueur, de la clarté des raisonnements et de la présentation.
- Encadrer vos résultats.

PARTIE I

EXERCICE 1:

Soient a, b et c trois réels fixés. On définit par récurrence la suite (v_n) de la manière suivante :

$$\begin{cases} v_0 = a \ , \ v_1 = b \ , \ v_2 = c \\ v_{n+3} = \frac{v_n + v_{n+1} + v_{n+2}}{3} \end{cases}$$
 Pour tout $n \ge 0$, on pose $V_n = \begin{pmatrix} v_{n+2} \\ v_{n+1} \\ v_n \end{pmatrix}$ et $A = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

- a) Montrer que pour tout n ≥ 0 , V_{n+1} = AV_n . En déduire l'expression de V_n en fonction de A, n et V₀ .
 - b) Montrer que 1 est une valeur propre de A et trouver les autres valeurs propres de A (on les notera r et s).
 - c) A est-elle diagonalisable sur IR ? sur C ?.
- 2) a) Montrer que pour tout n > 0, les valeurs propres de Aⁿ sont 1, rⁿ et sⁿ.
 - b) Montrer l'existence (sans les calculer) de trois nombres complexes α , β et γ tels que,

$$\forall n > 0$$
, $v_n = \alpha + \beta r^n + \gamma s^n$

- c) Montrer que $\forall x \in]-\sqrt{3}, \sqrt{3}[$, $\lim_{n\to+\infty} x^n(v_n-\alpha)=0$ et que la suite (v_n) converge vers α .
- d) En déduire que α est nombre réel.
- 3) Pour tout entier naturel n, on pose, $w_n = v_n + 2v_{n+1} + 3v_{n+2}$.

Montrer que, pour tout entier naturel n, $w_{n+1}=w_n$ et en déduire que $\alpha=\frac{a+2b+3c}{6}$.

EXERCICE 2:

Soit E un espace vectoriel euclidien de dimension finie n. Pour tout x, y de E, le produit scalaire de x et y sera noté (x|y) et la norme de x sera notée $||x|| = \sqrt{(x|x)}$.

Pour tout endomorphisme f de E, on notera $f^2 = f$ o f et si $f \neq 0$, on pose

$$K(f) = \sup_{x \notin Ker(f^2)} \frac{\|f(x)\|^2}{\|x\| \|f^2(x)\|}$$

On rappelle que si h est un endomorphisme de E, Ker(h) désigne le noyau de h et la norme de h est donnée par :

$$N(h) = \sup_{\|x\|=1} \|h(x)\|.$$

- 1) Calculer K(f) dans les deux cas suivants :
 - a) f est un endomorphisme de E vérifiant $\forall x \in E$, ||f(x)|| = ||x||
 - b) f est un endomorphisme d'un espace vectoriel euclidien de dimension 2, représenté dans une base orthonormée par la matrice $A = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$.

- 2) Montrer que si f est un endomorphisme bijectif de E, alors $K(f) = K(f^{-1})$.
- 3) Montrer que si f est un endomorphisme autoadjoint de E, alors $Ker(f) = Ker(f^2)$. Calculer K(f) dans le cas où $f^2 \neq 0$.
- 4) Montrer que si f est un endomorphisme de E alors :

$$E = Ker(f) \oplus Im(f)$$
 Si et Seulement Si $Ker(f) = Ker(f^2)$.

On note g l'endomorphisme de Im(f) induit par f et on suppose que $f^2 \neq 0$.

- i) Montrer que g est bijectif.
- ii) Montrer que K(f) est fini si et seulement si $Ker(f) = Ker(f^2)$ et que dans ce cas, $K(f) \le N(f)N(g^{-1})$.
- iii) Montrer que K(f)≥1.
- 5) Soit f un endomorphisme de E et f* son adjoint.
 - a) Montrer que f* o f est un endomorphisme autoadjoint de E positif.
 - b) Soit λ la plus grande valeur propre de f* o f. Montrer que N(f) = $\sqrt{\lambda}$.

PARTIE II

EXERCICE 3:

Dans cet exercice, on pourra utiliser la formule suivante, sans la justifier:

(*)
$$\sum_{n=0}^{+\infty} \sum_{n=0}^{+\infty} a_{n,p} = \sum_{n=0}^{+\infty} \sum_{n=0}^{+\infty} a_{n,p} \quad où \ (a_{n,p})n, p \ est \ une famille \ de \ nombres \ réels \ positifs.$$

Pour tout réel t, on pose

$$f(t) = -\sum_{n=1}^{+\infty} \ln(1 - e^{-nt}).$$

- 1) Montrer que $\forall t \in]0,+\infty[$, f(t) est bien définie.
- 2) Donner le développement en série entière de la fonction $x \to -\ln(1-x)$ et préciser le rayon de convergence.
- 3) Montrer que $\forall t \in]0,+\infty[$, $f(t) = \sum_{n=1}^{+\infty} \frac{1}{n(e^{nt}-1)}$. (Indication: on utilisera 2) et la formule (*)).
- 4) Montrer que la série $\sum_{n=1}^{+\infty} \frac{t}{n(e^{nt}-1)}$ est normalement convergente sur $]0,+\infty[$.
- 5) Déduire, en utilisant 3) et 4), un équivalent simple de f(t) quand t tend vers 0.

EXERCICE 4:

 Ω étant le disque ouvert de IR 2 , de centre O et de rayon 1. u une application de Ω vers IR de classe C^2 , vérifiant : $\forall (x,y) \in \Omega$, $\Delta u(x,y) = \frac{\partial^2 u}{\partial x^2}(x,y) + \frac{\partial^2 u}{\partial y^2}(x,y) = 0$. On considère l'application F définie sur $]0,1[\times IR \text{ par } F(r,\theta) = u(r\cos\theta,r\sin\theta)$.

- 1) a) Vérifier que F est de classe C² sur]0,1[×IR et calculer $\frac{\partial F}{\partial r}, \frac{\partial^2 F}{\partial r^2}, \frac{\partial F}{\partial \theta}, \frac{\partial^2 F}{\partial \theta^2}$ en fonction des dérivées partielles de u par rapport à x et y.

 b) En déduire que $\forall (r,\theta) \in]0,1[\times IR]$, $r^2 \frac{\partial^2 F}{\partial r^2}(r,\theta) + \frac{\partial^2 F}{\partial \theta^2}(r,\theta) + r \frac{\partial F}{\partial r}(r,\theta) = 0$.
- 2) Pour tout entier relatif n et tout réel r de]0,1[, on pose :

$$c_n(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F(r,\theta) e^{-in\theta} d\theta$$

a) Vérifier que c_n est de classe C² et montrer que pour tout r de]0,1[,

$$c_{n}^{'}(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\partial F}{\partial r}(r,\theta) e^{-in\theta} d\theta , c_{n}^{''}(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\partial^{2} F}{\partial r^{2}}(r,\theta) e^{-in\theta} d\theta .$$

b) Montrer que

$$\forall n \in \mathbb{Z}, \forall r \in]0,1[, \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\partial^2 F}{\partial \theta^2}(r,\theta) e^{-in\theta} d\theta = -n^2 c_n(r)$$

- 3) On considère l'équation différentielle (E_n) : $x^2y'' + xy' n^2y = 0$. On désigne par S_n l'ensemble des solutions de (E_n) et par T_n l'ensemble des solutions bornées de (E_n) .
 - a) Montrer que c_n est dans T_n .
 - b) Montrer que S_n est un espace vectoriel dont on déterminera la dimension.
 - c) Déterminer les solutions de (E_n) qui sont de la forme x^a où a est à déterminer.
 - d) Déduire les solutions de (E_n), puis donner c_n.
- 4) Donner l'expression de F pour $(r, \theta) \in]0,1[\times IR$

