المعهد الوطني للبريد والمواصلات السلكية واللاسلكية INSTITUT NATIONAL DES POSTES ET TELECOMMUNICATIONS

CONCOURS D'ACCES EN DEUXIEME ANNEE DU CYCLE D'INGENIEURS D'ETAT 12- 07 -2001

Epreuve de MATHEMATIQUES (Durée : 3Heures)

Avertissement:

- Les 3 problèmes doivent être traités sur des feuilles séparées.
- L'appréciation des copies tient compte de la rigueur, de la clarté des raisonnements et de la présentation.
- Encadrer vos résultats.

Problème I

Les deux parties sont indépendantes et pourront être traitées indépendemment.

Partie A

Soient $X_1, X_2, ...$ des variables aléatoires réelles. Pour chaque $n \in \mathbb{N}^*$, la densité de X_n est donnée par :

$$f_{X_n}(x) = \left\{ \begin{array}{ll} \frac{\sinh(x)}{n} \exp\left(\frac{1- \cosh(x)}{n}\right) & \text{ pour } x \geq 0 \\ 0 & \text{ ailleurs,} \end{array} \right.$$

où
$$sh(x) = \frac{e^x - e^{-x}}{2}$$
 et $ch(x) = \frac{e^x + e^{-x}}{2}$.

- Étudier la convergence en loi de ln(ch(X_n)) ln(n).
- 2) Étudier la convergence en probabilité de $\frac{\ln(\operatorname{ch}(X_n))}{\ln(n)}$
- 3) Étudier la convergence en probabilité de $\frac{X_n}{\ln(n)}$.

 (Pour les trois questions, on précisera la limite s'il y a lieu.)

Partie B

Soit X une variable aléatoire réelle de loi gaussienne $\mathcal{N}(0,1)$.

- 1) a) Montrer que la fonction caractéristique de X est : $t \mapsto \exp\left(-\frac{t^2}{2}\right)$.
- 1) b) En déduire que la fonction caractéristique d'une gaussienne $\mathcal{N}(\mu, \sigma^2)$ (où $\mu \in \mathbb{R}$ et $\sigma > 0$) est : $t \mapsto \exp\left(-\frac{\sigma^2 t^2}{2} + i\mu t\right)$.
- 2) Soient X_1, X_2, \ldots des variables aléatoires réelles. On suppose que pour chaque n, X_n suit la loi gaussienne $\mathcal{N}(\mu_n, \sigma_n^2)$ (où $\mu_n \in \mathbb{R}$ et $\sigma_n > 0$). On suppose de plus que X_n converge en loi vers X.
 - a) Montrer que σ_n converge vers un réel positif.
- 2) b) Montrer que la suite (μ_n) est bornée. On pourra utiliser un argument par l'absurde, en considérant les fonctions de répartition de X_n et de X.
 - 2) c) En déduire que X est une variable aléatoire gaussienne.
- 3) On suppose que pour tout $n \in \mathbb{N}^*$, $\begin{pmatrix} X_n \\ Y_n \end{pmatrix}$ est un vecteur gaussien. On suppose de plus que X_n et Y_n convergent en probabilité respectivement vers X et Y. Le vecteur aléatoire $\begin{pmatrix} X \\ Y \end{pmatrix}$ est-il gaussien ? (Prouver qu'il s'agit d'un vecteur gaussien, ou donner un contre exemple.)

Problème II

Les deux parties sont indépendantes et pourront être traitées indépendemment.

Partie A

- 1) Développer en série de Fourier complexe la fonction périodique g donnée sur $]0,1[par g(x) = \frac{1}{2} - x.$
 - 2) En déduire la somme de la série $S = \sum_{n=+\infty}^{n=+\infty} e^{2i\pi nx}$.

Partie B

Une fonction $f : \mathbb{R} \to \mathbb{R}$ est dite à décroissance rapide si :

- (a) f est de classe C^{∞} sur \mathbb{R} .
- (b) Pour tout $k \in \mathbb{N}^*$ et pour tout $n \in \mathbb{N}$ on a : $\lim_{|x| \to +\infty} (1+x^2)^k f^{(n)}(x) = 0$.

Soit f une fonction à décroissance rapide et T un réel strictement positif.

- Soit f une fonction a decrossolate $\sum_{n=-\infty}^{n=+\infty} f(x+nT)$ converge localement et uniformément sur tout IR vers une fonction g de classe C^1 .
- 2) Donner les coefficients de Fourier de g. La fonction g est-elle en tout point la somme de sa série de Fourier ?
 - 3) Déduire de ce qui précède la formule dite sommatoire de Poisson, à savoir :

$$T\sum_{n=-\infty}^{n=+\infty}f(nT)=\sum_{n=-\infty}^{n=+\infty}F(\frac{n}{T}),$$

avec F désignant la transformée de Fourier de f.

4) Application: Calculer pour a > 0, la somme de la série de Fourier $\sum_{n=1}^{n=+\infty} \frac{1}{n^2 + a^2}$. On rappelle que la transformée de Fourier de la fonction $f(x) = \frac{1}{x^2 + a^2}$ est donnée $par F(x) = \frac{\pi}{a} e^{-2a\pi|x|}.$

Problème III

Les deux parties sont indépendantes et pourront être traitées indépendemment.

Partie A

Soit $f: \mathbb{R} \to \mathbb{R}$ une application trois fois continûment dérivable dans un intervalle [a, b] de \mathbb{R} telle que l'équation : f(x) = x admet une unique solution α dans [a, b]. On suppose que : $f'(\alpha) \neq 1$.

On considère sur [a,b], l'application : D(x) = f(f(x)) - 2 f(x) + xPour $x^{(0)} \in [a,b]$ et $k \ge 0$, on définit une suite $(x^{(k)})$ par :

$$(*) \ \ x^{(k+1)} = G(x^{(k)}) \ \text{où} \ \ G(x) = \left\{ \begin{array}{cc} x - \frac{[f(x) - x]^2}{D(x)} & \text{si } D(x) \neq 0 \\ x & \text{si } D(x) = 0 \end{array} \right.$$

1) Soit $g: \mathbb{R} \to \mathbb{R}$ l'application définie par : $g(h) = \begin{cases} \frac{f(\alpha+h)-\alpha}{h} & \text{si } h \neq 0 \\ f'(\alpha) & \text{si } h = 0 \end{cases}$ Démontrer que, pour $h \neq 0$, on a :

 $D(\alpha + h) = h E(h)$ où E est une application à déterminer.

- 2) a) Montrer que, pour $0 < |h| \le \varepsilon$ avec $\varepsilon > 0$ et assez petit, on a : $E(h) \ne 0$.
- 2) b) En déduire que, pour $0 < |h| \le \varepsilon$ avec $\varepsilon > 0$ et assez petit, on a :

$$G(\alpha + h) = \alpha + h - h \frac{[g(h)-1]^2}{E(h)}.$$

Démontrer que, pour x⁽⁰⁾ suffisamment proche de α, la suite (x^(k)) définie par
 (*) converge vers α et donner l'ordre de convergence.

Partie B

Soit $F: \mathbb{R}^2 \to \mathbb{R}^2$ une application deux fois continûment différentiable dans un domaine V de \mathbb{R}^2 , telle que l'équation : F(x) = x admet une unique solution α dans V.

Pour $x^{(0)} \in V$, on considère la suite $(x^{(k)})$ définie par : $x^{(k+1)} = F(x^{(k)}), k \ge 0$.

1) Démontrer que, pour $x^{(0)} \in V$ et $k \ge 0$, on a:

(**)
$$x^{(k+1)} - \alpha = J(\alpha)(x^{(k)} - \alpha) + o(||x^{(k)} - \alpha||^2)$$

où $J(\alpha)$ est la matrice jacobienne de F au point α .

- 2) On néglige, dans la formule (**), le terme $o(||x^{(k)} \alpha||^2)$.
- 2) a) Montrer que, pour $x^{(0)}$ et $x^{(1)} \in V$ et $k \geq 0$, on a:

$$x^{(k+1)} - x^{(k)} = J(\alpha)(x^{(k)} - x^{(k-1)})$$

Pour tout $k \ge 1$, on pose: $X_k = (x^{(k)}, x^{(k+1)})$ et on suppose que :

 $\Delta X_k = X_k - X_{k-1}$ et $(\Delta X_k - \Delta X_{k+1})$ sont inversibles.

- 2) b) Exprimer α en fonction de $x^{(k)}$, $x^{(k+1)}$, ΔX_k et ΔX_{k+1} .
- 2) c) Donner un schéma itératif qui ne dépend pas de α .

