السنة الدراسية 2012 _ 2013

مدة الانجاز: 2 ساعات

الفرض المحروس 1 في العلوم الفيزيائية المستوى الثانية بكالوريا علوم تجريبية ـ مسلك العلوم الفيزيائية

الثانوية التأهلية صلاح الدين الأيوبي _ أسفي نيابة إقليم أسفى

الأستاد : علال محداد

الاعتناء بتنظيم ورقة التحرير ضروري ضرورة كتابة العلاقات الحرفية قبل كل تطبيق عددي ضرورة تأطير العلاقات الحرفية والتطبيقات العددية

الكيمياء (7نقط)

 ${
m C_2H_2O_4}$ لحمض الأوكساليك ${
m C_2H_2O_4}$ لدراسة التتبع الزمني لتطور مجموعة كيميائية ، حضر الأستاذ في المختبر محلولا $C_0 = 5.0 \times 10^{-1} \text{ mol} / \text{L}$ تركيزه المولي

من التجربية رفقة فوجا من التلاميذ طلب منهم الأستاذ تحضير محلولا $(\mathrm{S}_{\scriptscriptstyle 1})$ لحمض الأوكسيلك حجمه -1. S₀ وذلك بتخفيف المولى $C = 5.0 \times 10^{-2} \text{mol/L}$ وتركيزه المولى V = 100 mL

(${f S}_0$) الحصول على المحلول المخفف (${f S}_1$) غن (${f S}_1$) الحصول على المحلول المخفف (${f S}_1$) (${f C}_1$

($\mathbf{0.5}$) . حدد الطريقة المتبعة والأدوات اللازمة لإنجاز عملية التخفيف $\mathbf{0.5}$

. في وسط حمضي تتفاعل أيونات البرمنغنات $\mathrm{MnO}_{4}^{-}(\mathrm{aq})$ مع حمض الأوكساليك وفق تفاعل نعتبره كليا 2

 $C_1 = 5 \times 10^{-2} \,\mathrm{mol}\,/\,\mathrm{L}$ وتركيزه $V_1 = 50 \,\mathrm{mL}$ ونحضر في كأس محلولا (S_1) لحمض الأوكساليك حجمه $m V_2 = 50 mL$ وتركيزه $(
m K^+(aq) + MnO_4^-(aq))$ المحمض حجمه $m S_2$ وتركيزه أخرى محلولا

 $C_2 = 10^{-1} \text{ mol} / L$

عند خلط المحلولين ، نلاحظ تدريجيا ، انطلاق غاز يعكر ماء الجير (ثنائي أوكسيد الكربون) واختفاء اللون البنفسجي المميز لأيونات البرمنغنات .

 $CO_2(g)/C_2H_2O_4(aq)$ و $MnO_4^-(aq)/Mn^{2+}(aq)$: المزدوجتان المتفاعلتان هما

2 ـ 1 هل هذا التفاعل بطيء

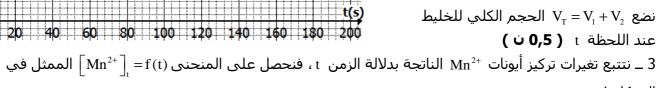
أم سريع ؟ علل جوابك **(0,25 ن)**

2 _ 2 أكتب معادلة التفاعل

الحاصل (0,75 ن)

2 ــ 3 انجز الجدول الوصفي لتقدم التفاعل وحدد التقدم

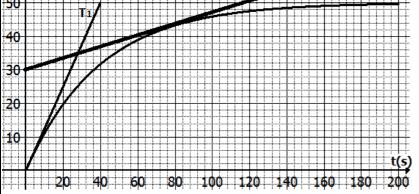
الأقصى x_{max} (**1,25** ن)


x أوجد علاقة التقدم x و

t عند اللحظة Mn^{2+} تركيز أيونات $\lceil Mn^{2+} \rceil$

نضع $V_T = V_1 + V_2$ الحجم الكلي للخليط

عند اللحظة t (0,5 ن)


الشكل 1

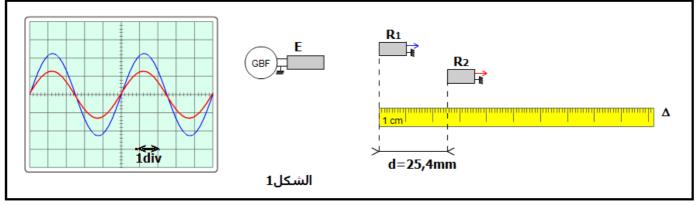
- $\lceil \mathrm{Mn}^{2+}
 ceil$ أعط تعريف السرعة الحجمية للتفاعل . وأوجد تعبيرها بدلالة 1-3(1 Ú)
 - (1 **ن** 1 عين قيمة السرعة عند t = 0s و t = 0s
 - 3 _ 3 عرف زمن نصف التفاعل (**0,5)**
- التركيز الأقصى $\left[\mathrm{Mn}^{2+}\right]_{\mathrm{max}}$ بدلالة المحظة المحدد $\left[\mathrm{Mn}^{2+}\right]_{\mathrm{tra}}$ التركيز الأقصى 4-3

لأيونات 1,75 (**0,75** ن) لأيونات

($\dot{\mathbf{1}}$) . استنتج قيمة $t_{1/2}$ مبيانيا

الفيزياء

دراسة موجة صوتية وموجة ضوئية


خلال حصة الأشغال التطبيقية قام الأستاذ وتلاميذه بتحديد سرعة انتشار الصوت في وسطين مختلفين (الهواء والماء) وتعيين طول الموجة لموجة ضوئية ودراسة انتشار حزمة ضوئية في موشور من الزجاج

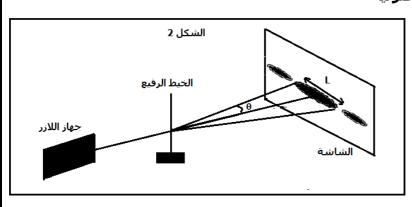
I ــ التعيين التجريبي لسرعة انتشار الصوت

لتحديد سرعة انتشار الموجات الصوتية في وسطين مختلفين ، تم إنجاز التركيب التجريبي الممثل في الشكل 1 ، حيث الميكروفونان R_2 و R_1 تفصل بينهما المسافة R_2

في التجربة 1 تم إنجاز التجربة في الهواء . يمثل الرسمان التذبذبيان الممثلان في الشكل 1 تغيرات التوتر بين مربطي كل ميكروفون بالنسبة للمسافة $d_1 = 25,4$ mm .

 $5\mu \mathrm{s}/\mathrm{div}$: هي R_2 و R_1 الحساسية الأفقية للمدخلين المرتبطين ب

- 1 _ ما طبيعة الموجات الصوتية ؟ علل الجواب 1 ن
- ن الموتية الدور T للموجات الصوتية المنبعثة من مكبر الصوت T للموجات الصوتية المنبعثة من مكبر الصوت T
- R_{\perp} نزيح أفقيا الميكروفون R_{2} وفق المستقيم Δ إلى أن يصبح الرسمان التذبذبيان من جديد ولأول مرة على توافق في الدور ، فتكون المسافة بين R_{1} و R_{2} هي R_{2} هي الدور ، فتكون المسافة بين R_{1} و R_{2} هي الدور ،
 - ل طول الموجة للموجة الصوتية λ طول الموجة الصوتية λ
 - $\mathbf{L} = \mathbf{L}$ أحسب \mathbf{v}_{em} سرعة انتشار الموجة الصوتية في الهواء $\mathbf{L} = \mathbf{L}$
- 4 _ في التجربة الثانية نعوض الهواء بالماء ونعيد نفس التجربة حيث يكون الرسمان التذبذبيان على توافق في الطور عندما تكون المسافة الفاصلة بين الميكروفونين هي $D_1 = 10,1$. علما أن سرعة انتشار الموجة الصوتية في الماء هي R_2 وفق المستقيم D_2 لكي الماء هي $V_{\rm air} = 1500$. ما المسافة D_2 التي يجب أن نزيح أفقيا الميكروفون D_2 وفق المستقيم D_2 لكي يصبح الرسمان التذبذبيان من جديد ولثاني مرة على توافق في الطور ؟ 1,25 \mathbf{v}


II ــ التعيين التجريبي لطول الموجة لموجة ضوئية

لتحديد طول الموجة λ لموجة ضوئية ، تمت إضاءة خيط رفيع قطره $d=5\times10^{-5}$ مثبتا على حامل ، بواسطة حزمة ضوئية أحادية اللون منبعثةمن جهاز اللازر ، فنعاين على الشاشة والتي توجد على مسافة D=3m من الخيط بقع ضوئية كما في الشكل D=3m . أعطى عرض البقعة المركزية القيمة D=7,6cm .

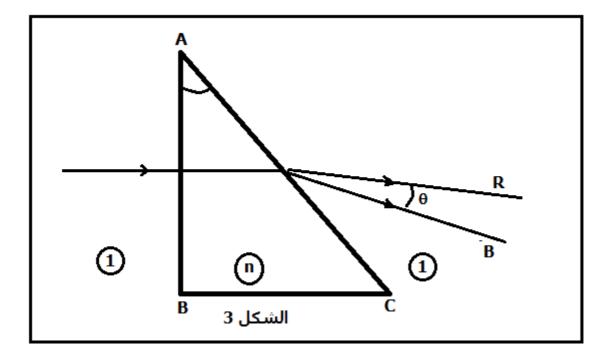
1 _ ما اسم الظاهرة التي تبرزها هذه التجربة ع • ··

2 ـ أذكر الشرط الذي يجب أن يحققه قطر الخيط d لكي تحدث هذه الطاهرة ؟ **0,5 ن**

النسبة لزاوية θ صغيرة) . λ و D و b ثم احسب λ . (نعتبر $\theta \simeq \theta$ بالنسبة لزاوية θ صغيرة) λ فرح λ

III ــ دراسة انتشار موجة ضوئية في موشور من الزجاج

في تجربة ثانية تمت إزالة الخيط الرفيع وتعويضه بموشور من الزجاج معامل انكساره n=1.58 وزاويته $A=30^\circ$ وتمت إضاءته بواسطة الحزمة الضوئية الأحادية اللون السابقة α . نعطي سرعة الضوء في الفراغ وفي الهواء


 $n_{air}=1$ معامل انكسار الهواء $c=3\times10^{-8}\,\mathrm{m/s}$

- ا _ أحسب $\, {
 m v} \,$ قيمة سرعة انتشار الحزمة الضوئية في الموشور . $\, {f 1} \,$ $\, {f U} \,$
- . أوجد قيمة $\lambda_{\scriptscriptstyle \parallel}$ طول الموجة للحزمة الضوئية خلال انتشارها في الموشور $\lambda_{\scriptscriptstyle \parallel}$

ما قيمة تردد الحزمة الضوئية ؟ **1,5 ن**

 $_{\rm n_p}$ =1,510 مختلفة من الوجه الأخر للموشور أشعة دات ألوان مختلفة من بينها الشعاعان الأحمر والأزرق . معامل انكسار الموشور بالنسبة لضوء الأزرق $_{\rm n_p}$ =1,523 وبالنسبة للضوء الأحمر $_{\rm n_p}$ =1,510

أحسب الفرق الزاوي $\Delta \theta$ يين الشعاعين المنبثقين من الوجه ΔC للموشور **2,5 ن**

تصحيح الفرض المحروس الأول في العلوم الفيزيائية

المستوى الثانية بكالوريا علوم فيزيائية

الكيمي___اء

 S_0 المحلول المحلول المحلول المحلول

 $C_0V_0 = C.V$: حسب علاقة التخفيف -1-1

 S_0 الحجم الذي يجب أخذه من المحلول V_0

$$V_0 = \frac{C}{C_0}.V$$

$$V_0 = 10mL$$

2-1 الطريقة المبعة والأدوات اللازمة لإنجاز عملية التخفيف :

10mL ماصة من فئة

_ الماء المقطر

100mL حوجلة من فئة -

بواسطة الماصة ، نأخذ 10mL من المحلول S_0 ونسكبه في الحوجلة المعيارية ، ونضيف إليه الماء المقطر تدريحيا ، مع التحريك ، حتى نقترب من الخط المعيار ثم نضيف قطرة قطرة ختى نصل إلى الخط المعيار ،

 \dot{t} تتبع تطور نوع كيميائي في خليط تفاعلى بدلالة الزمن \dot{t}

1-2 _ التفاعل بطيء : لأن غاز ثنائي أوكسيد الكربون واختفاء اللون التنفسجي لأيونات المنغنيز يتم بشكل تدريحي حسب الملاحظة .

: معادلة التفاعل الحاصل 2-2

$$CO_2(g)/H_2C_2O_4(aq)$$
 MnO_4^-/Mn^{2+}
 $MnO_4^-(aq) + 8H^+(aq) + 5e^- \rightleftharpoons Mn^{2+}(aq) + 4H_2O(l)$
 $C_2H_2O_4(aq) \rightleftharpoons 2H^+(aq) + 2CO_2(g)$

وبالتالي فإن المعادلة الحصيلة هي :

 $2MnO_4^-(aq) + 5C_2H_2O_4(aq) + 6H^+(aq) \rightarrow 2Mn^+(aq) + 10CO_2(g) + 8H_2O(l)$

معادلة التفاعل	$2\mathrm{MnO}_4^-(aq)$	$5C_2H_2O_4(aq)$	$6\mathrm{H}^+(aq)$	\rightarrow	$2\mathrm{Mn}^+(aq)$	$10\mathrm{CO}_2(g)$	$8\mathrm{H}_2O(l)$
t=0	C_2V_2	C_1V_1	-		0	0	-
t	C_2V_2-2x	$C_1V_1 - 5x$	-		2x	10x	-
t_f	$C_2V_2 - 2x_{max}$	$C_1V_1 - 5x_{max}$	-		$2x_{max}$	$10x_{max}$	-

_ التقدم الأقصى :

$$\frac{n_0(MnO_4^-)}{2} = \frac{C_2V_2}{2} = 2, 5.10^{-3} mol$$

$$\frac{n_0(C_2H_2O_4)}{5} = \frac{C_1V_1}{5} = 5.10^{-4} mol$$

$$\frac{n_0(MnO_4^-)}{2} > \frac{n_0(C_2H_2O_4)}{5}$$

$$x_{max} = 0, 5.10^{-3mol}$$

 $: [Mn^{2+}]$ و x علاقة التقدم 2-4

حسب الجدول الوصفى:

$$n(Mn^{2+}) = 2x \Rightarrow [Mn^{2+}] = \frac{n(Mn^{2+})}{V_1 + V_2} = \frac{2x}{V_1 + V_2}$$
$$2x = (V_1 + V_2)[Mn^{2+}]$$
$$x = \frac{(V_1 + V_2)}{2}[Mn^{2+}]$$

: لتفاعل = 3 - 1

نعرف السرعة الحجمية للتفاعل بالمشتقة الأولى للتقدم x بالنسبة للزمن مقسومة على الحجم الكلى للخليط ، ونعبر عنها بالعلاقة

$$v(t) = \frac{1}{V_T} \cdot \frac{dx}{dt}$$

: وبما أن $x=\frac{V_1+V_2}{2}.[Mn^{2+}]$ وبما أن $x=\frac{V_1+V_2}{2}.[Mn^{2+}]$ وبما أن $v(t)=\frac{1.V_T}{V_T.2}.\frac{d[Mn^{2+}]}{dt}$

$$v(t) = \frac{1.V_T}{V_T.2} \cdot \frac{d[Mn^{2+}]}{dt}$$

$$x = \frac{1}{2} \frac{d[Mn^{2+}]}{dt}$$

t=80s عند اللحظة t=0 و عند اللحظة عند اللحظة t=3-2

$$v(t=0) = \frac{1}{2}.(\frac{\Delta [Mn^{2+}]}{\Delta t})_{t=0}$$

مثل المقدار

$$\left(\frac{\Delta[Mn^{2+}]}{\Delta t}\right)_{t=0}$$

t=0 المعامل الموجه لماس المنحنى عند اللحظة

$$v(t=0) = 0,625.10^{-3} mol/l.s$$

$$v(t = 80s) = 0,125.10^{-3} mol/l.s$$

3-3 يعريف بزمن نصف التفاعل : رأنظر الدرس 3

 Mn^{2+} عند اللحظة $t_{1/2}$ بدلالة $[Mn^{2+}]_{max}$ التركيز الأقصى لأيونات $[Mn^{2+}]_{max}$ عند اللحظة $t_{1/2}$ بدلالة لدينا

$$x_{1/2} = \frac{V_T}{2} \cdot [Mn^{2+}]_{1/2}$$

$$\frac{x_{max}}{2} = \frac{V_T}{2} \cdot [Mn^{2+}]_{1/2}$$

$$x_{max} = V_T.[Mn^{2+}]_{1/2}$$

من جهة أخرى لدينا

$$x_{max} = \frac{V_T}{2} \cdot [Mn^{2+}]_{max}$$

$$\boxed{[Mn^{2+}]_{1/2} = \frac{[Mn^{2+}]_{max}}{2}}$$

: قیمة $t_{1/2}$ مبیانیا : قیمة 3-5

حسب المان لدينا

$$[Mn^{2+}]_{max} = 50.10^{-3} mol/L \Rightarrow \frac{[Mn^{2+}]_{max}}{2} = 25.10^{-3} mol/L$$

الفيزياء

دراسة موجة صوتية وموجة ضوئية

التعيين التجريبي لسرعة انتشار الصوت I

1 _ طبيعة الموجة الصوتية : موجة ميكانيكية طولية ، لكونها تتطلب وسط مادي مرن وأن اتجاه حركة نقطة من وسط الانتشار توازى منحى انتشار الموجة

: قيمة الدور T مبيانيا

حسب المبيان لدينا:

T = 5 div

 $1div = 5\mu s$ وأن

 $T=25\mu s$

3-1 قيمة طول الموجة الصوتية :

 $d_2 - d_1 = \lambda$ $\lambda = 8, 7.10^{-3} m$

: -3 - 2 - -3 - 2

 $\lambda = v_{air}.T$ $v_{air} = \frac{\lambda}{T}$

 $v_{air} = 348m/s$

4 عند يصبح المنحنيان من جديد ولثاني مرة على توافق في الطور 4

 $D_2 - D_1 = 2\lambda'$

 $\lambda' = v_{eau}.T$ $D_2 - D_1 = 2v_{eau}T$

 $D_2 = 2v_{eau}T + D_1$

 $D_2 = 85, 1mm$

II _ التعيين التجريبي لطول الموجة لموجة ضوئية :

1 _ الظاهرة التي تبرزها هذه التجربة : ظاهرة الحيود لموجة ضوئية

: عند الشرط الذي يجب أن يحققه قطر الخيط d لكى تحذث ظاهرة الحيود هو d

 $\boxed{ d \leq 100 \lambda}$

ومن جهة ثانية وحسب الشكل:

 $tan\theta \simeq \theta = \frac{L}{2D}$

ومنه فإن :

 $\frac{\lambda}{d} = \frac{L_1}{2D} \quad \Rightarrow \quad \lambda = \frac{L_1 \cdot d}{2D}$ $\boxed{\lambda = 6, 33.10^{-7} m}$

. وراسة أنتشار موجة ضوئية في موشور من الزجاج
$$v$$
 . v .

$$n = \frac{c}{v} \Leftrightarrow v = \frac{c}{n}$$

$$v=1,9.10^8 m/s$$

: عيمة λ_1 طول موجة الحزمة الضوئية في الموشور $\lambda_1 = c.T$. $\lambda_1 = v.T$

$$\lambda = c.T \qquad \lambda_1 = v.T$$

$$\frac{\lambda_1}{\lambda} = \frac{c}{v} = n$$

$$\lambda_1 = \frac{\lambda}{n}$$

$$\lambda_1 = 400nm$$

تردد الموجة:

$$N = \frac{c}{\lambda} = \frac{v}{\lambda_1}$$

$$N=4,7.10^{14}Hz$$

3 _ حساب الفرق الزاوي :

حسب الشكل لدينا:

$$\Delta\theta = D_B - D_R$$

ونعلم أن الانحراف بالنسبة لموشور هو:

$$D = i + i' - A$$

أي أن

$$\Delta\theta = (i + i'_B - A) - (i + i'_R - A)$$
$$\Delta\theta = i'_B - i'_R$$

 i_R' و i_B' من i_B' و يجب تحديد كل من الشكل الشكل :

$$i = 0 \Rightarrow r = 0$$

 $A = r + r' \Rightarrow A = r'$

وحسب قانوني ديكارت للإنكسار لدينا:

$$nsinr' = sini' \Rightarrow nsinA = sini'$$

 $sini' = 0, 5n$

بالنسبة للضوء الأحادي اللون الأزرق:

$$sini_B' = 0, 5n_B \Rightarrow i_B' = 49, 6^{\circ}$$

بالنسبة للضوء الأحادي اللون الأحمر:

 $sini'_R = 0, 5n_R \Rightarrow i'_R = 49,02^{\circ}$ $\Delta\theta = 0,580^{\circ}$

