
Les matériaux et l'électricité

(Prof: KASBANE AHMED)

I – Les constituants de l'atome.

L'atome est constitué d'un noyau autour duquel gravitent des électrons qui forment un nuage électronique.

1 - Le novau.

- Le noyau est situé au centre de l'atome et porte des charges positives.
- Toute la masse de l'atome est pratiquement concentrée dans le noyau.
- Le diamètre du noyau est 100 000 fois plus petit que celui de l'atome : l'atome est formé essentiellement du vide : L'atome a une structure lacunaire.
- Le nombre de charges positives du noyau d'un atome est appelé numéro atomique noté Z, c'est une caractéristique de l'atome.

2 – Les électrons.

- Les électrons tournent autour du noyau à très grande vitesse sur des trajectoires variables, plus ou moins éloignées du noyau. Ils forment un cortège électronique dans un atome.
- La masse des électrons est très faible.
- Chaque électron porte une charge électrique négative notée e, qui représente la charge élémentaire, exprimée en coulomb de symbole C, sa valeur est e = 1.6×10⁻¹⁹ C.
- Les électrons sont identiques quel que soit l'atome.
- Chaque atome a un nombre défini d'électrons.

(Symboles et nombres d'électrons de quelques atomes)

Atome	Symbole	Nombre d'électrons
Hydrogène	H	1
Carbone	C	6
Oxygène	0	8
Aluminium	Αℓ	13
Fer	Fe	26
Cuivre	Cu	29

3 – Neutralité électrique de l'atome.

- Dans un atome le nombre de charges positives de son noyau est égal au nombre de charges négatives de ses électrons. Ainsi, la charge positive du noyau (+ Ze) est opposée à la charge négative du nuage électronique (Ze).
- La charge d'un atome est nulle (+ Ze) + (Ze) = 0 : l'atome est électriquement neutre.

Charge de l'atome = charge du noyau + charge du nuage électronique
$$0 = (+Ze) + (-Ze)$$

* Exemple:

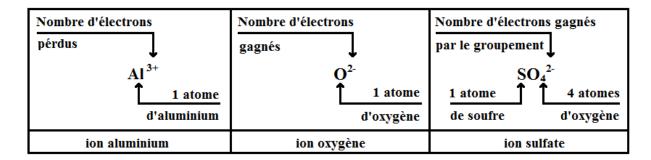
Nom de l'atome	Carbone
Numéro atomique	Z=6
Charge du noyau	+ Ze = $+$ 6e
Charge du nuage électronique	- Ze = - 6e
Charge globale de l'atome	(+Ze)+(-Ze)=(+6e)+(-6e)=0

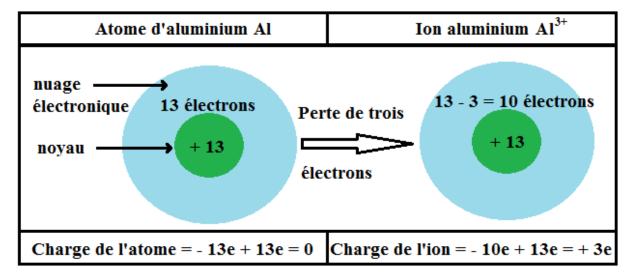
* Remarques :

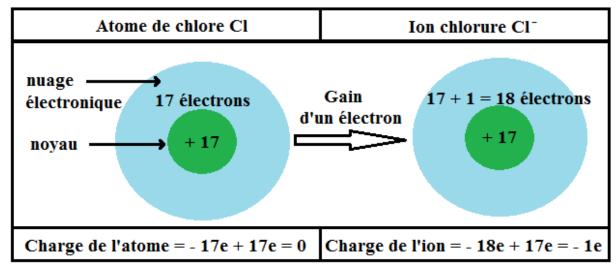
- ► Dans un métal, le courant électrique est dû au déplacement des <u>électrons libres</u> qui se déplacent dans le sens opposé au sens conventionnel du courant.
- ▶ Un isolant n'a pas d'électrons libres, il ne conduit pas le courant électrique.

II - Les ions.

1 – Définition.


- Un ion provient d'un atome ou d'un groupement d'atomes ayant perdu ou gagné un ou plusieurs électrons.
- Il existe deux types d'ions :
 - ► Les ions positives proviennent d'un atome ou d'un groupement d'atomes ayant perdu un ou plusieurs électrons, on les appelle cations.
 - ► Les ions négatives proviennent d'un atome ou d'un groupement d'atomes ayant gagné un ou plusieurs électrons, on les appelle anions.
- Un ion monoatomique est constitué d'un seul atome.
- Un ion polyatomique est constitué par un ensemble d'atomes.


* Exemples:


Les cations		Les anions	
monoatomiques	polyatomiques	monoatomiques	polyatomiques
\mathbf{H}^{+}	H_3O^+	Cl ⁻	OH.
$\mathbf{A\ell}^{3+}$	NH_4^+	O^{2-}	SO_4^{2-}

- Dans la formule des ions, le nombre et le signe des charges sont notés en haut à droite de la formule.
- Le nombre de charges d'un ion est la différence entre le nombre d'électrons présents dans l'ion et le nombre de charges positives.

* Remarques :

- Les solutions qui contiennent des ions sont appelées solutions ioniques. Ces solutions sont électriquement neutres : les charges positives portées par les cations sont compensées par les charges négatives portées par les anions.
- Les solutions conductrices contiennent des ions.
- Dans une solution conductrice, le courant électrique est dû à une circulation d'ions.
 - Les ions positifs (les cations) se déplacent dans le sens conventionnel du courant.
 - Les ions négatifs (les anions) se déplace dans le sens inverse.

* Résumé :

	Atome	Ion
Nombre d'électrons	Z	$\mathbf{Z}^* (\mathbf{Z}^* \neq \mathbf{Z})$
Charge des électrons	- Ze	- Z *e
Charge du noyau	+ Ze	+ Z e
Charge globale	$-\mathbf{Z}\mathbf{e}+\mathbf{Z}\mathbf{e}=0$	$-\mathbf{Z}^*\mathbf{e} + \mathbf{Z}\mathbf{e} \neq 0$