<u>صفحة</u> 1 7		الامتحان الوطني الموحد للبكالوريا المسالك الدولية، خيار إنجليزية الدورة العادية 2017 - الموضوع - NS 28E		ومربع والامتحادات بالمعدد معدد معدد محمد معدد معدد معدد معدد معدد معدد معدد مع	قىلىتەقىرىة وزارق التربية الولمنية والتحليم العالى والبحث العلس المركز الموطني، للة
3	ة الإنجاز	مدز	الكيمياء	N	المادة
7	لمعامل	11	ئية- خيار إنجليزية	الشعبة أو المسلك	

The use of non-programmable scientific calculator is allowed

This exam paper consists of four exercises

EXERCISE I (7 points):

- Electrochemical cell: aluminium-copper
- Butanoic acid reactions

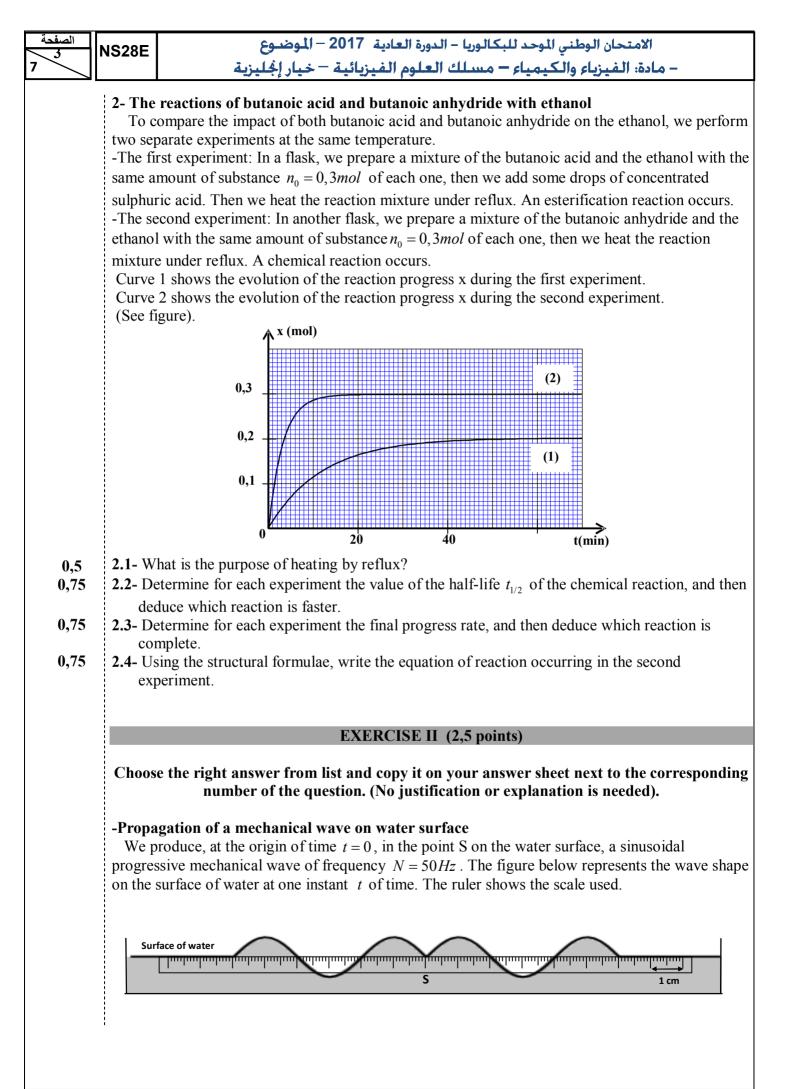
EXERCISE II (2,5 points):

- Propagation of a mechanical wave on water surface

EXERCISE III (5 points):

- Response of RL dipole to a step voltage
- Amplitude modulation

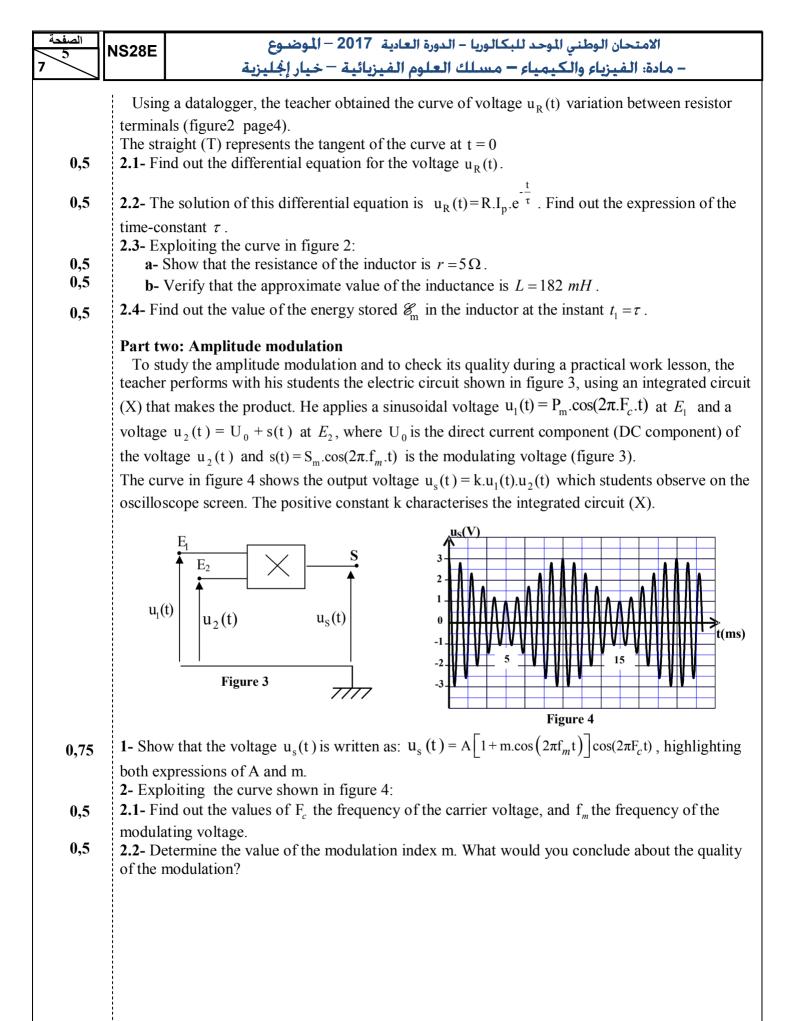
EXERCISE IV (5,5 points):

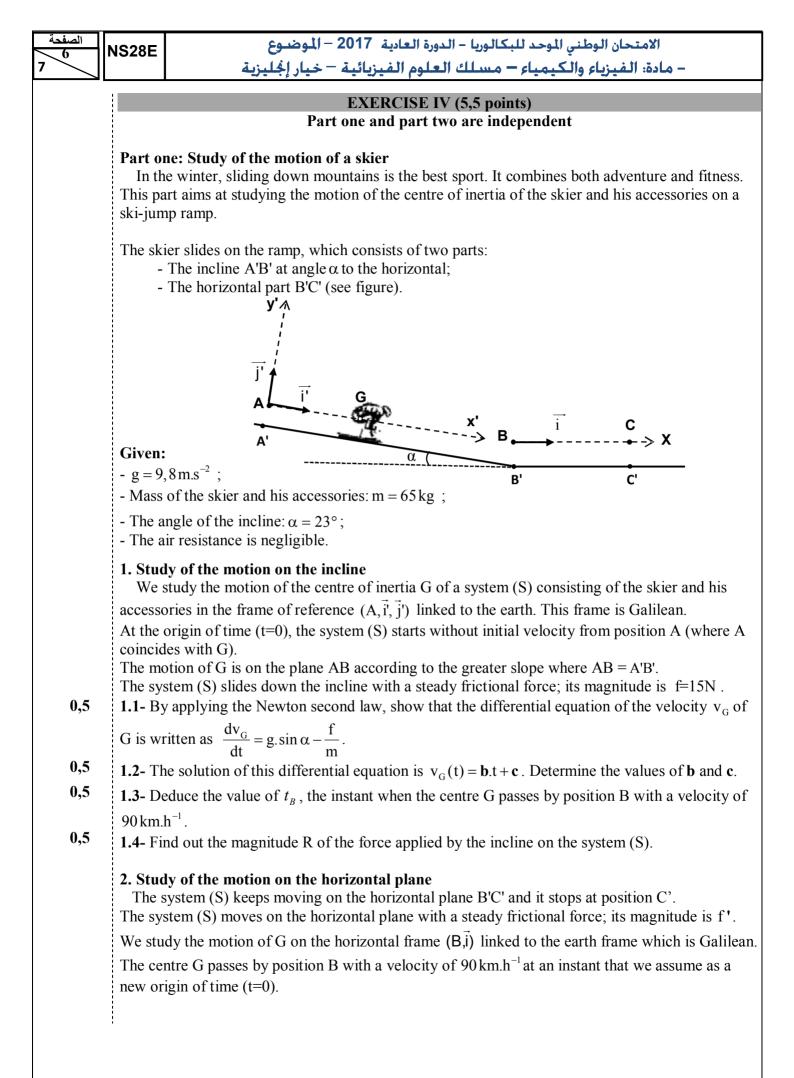

- Study of the motion of a skier with frictional force
- Energetic study of the torsion pendulum

7

الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2017 – الموضوع – مادة: الفيزياء والكيمياء – مسلك العلوم الفيزيائية – خيار إنجليزية

/	– ماده: الفيزياع والكيمياع – مسلك العلوم الفيزيانية – حيار إجليزية
	EXERCISE I (7 points)
Marking	
scale	Part one and part two are independent
	Part one: Electrochemical cell; aluminium-copper
	The functioning of the electrochemical cells is based on the principle of the conversion of a part of the chemical energy, produced by spontaneous chemical reactions, into a useful electric energy.
	In this part, we suggest a simple study of the electrochemical cell : aluminium-copper.
	To study an aluminum-copper electrochemical cell, we perform the following experiment:
	-An electrode of copper metal is placed into a beaker which contains an aqueous solution of
	$Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ of volume V = 65 mL. The initial molar concentration of $Cu_{(aq)}^{2+}$ is
	$\left[Cu_{(aq)}^{2+}\right]_{i}=6,5.10^{-1}mol.L^{-1}.$
	-An electrode of aluminum metal is placed into another beaker which contains the aqueous solution
	of $2Al_{(aq)}^{3+} + 3SO_{4(aq)}^{2-}$ of the same volume V = 65 mL. The initial molar concentration of $Al_{(aq)}^{3+}$ is
	$\left[Al_{(aq)}^{3+}\right]_{l} = 6,5.10^{-1} mol.L^{-1}.$
	-A salt bridge to connect solutions.
	In series, an ammeter, a resistor and a switch are connected between the electrochemical cell poles.
	When we switch on the circuit, a steady electric current flows. Given:
	-The two redox pairs involved in the reaction are $Cu_{(aq)}^{2+}/Cu_{(s)}$ and $Al_{(aq)}^{3+}/Al_{(s)}$;
	- Faraday constant : $1F = 9,65.10^4 C.mol^{-1}$;
	-The equilibrium constant associated to the reaction $3Cu_{(aq)}^{2+} + 2Al_{(s)} \stackrel{(1)}{\longleftrightarrow} 3Cu_{(s)} + 2Al_{(aq)}^{3+}$ is $K = 10^{200}$.
0,5	1- Write, at the initial state, the expression of the reaction quotient $Q_{r,i}$, and calculate its value.
0,5	2- Determine the spontaneous direction of the chemical system during the cell functioning (Justify
0.5	your answer).
0,5 0,75	3- Give the cell diagram (cell notation) of the studied cell.4- Find out the value of the amount of charge q flowing in the circuit when the value of the molar
0,75	effective concentration of copper (II) ions is $\left[Cu_{(aq)}^{2+} \right] = 1, 6.10^{-1} \text{ mol.} L^{-1}$.
	Part two: butanoic acid reactions
	The butanoic acid C_3H_7COOH is used to synthesise perfumes, food flavours, etc.
	This part of the exercise aims at studying the reaction between butanoic acid and water, and
	comparing the impact of this acid and its anhydride on the ethanol C_2H_5OH .
	1- The reaction between butanoic acid and water:
	In the chemistry lab, we prepare an aqueous solution of butanoic acid of volume V and of molar
	concentration $C = 1, 0.10^{-2} mol.L^{-1}$. The <i>pH</i> value of this solution is <i>pH</i> = 3, 41.
	The occurring transformation is represented by the following chemical equation: $C \parallel C \cap U = C \parallel C \cap U = C \parallel C \cap U^{+}$
0 77	$C_{3}H_{7}COOH_{(aq)} + H_{2}O_{(1)} \rightleftharpoons C_{3}H_{7}COO_{(aq)}^{-} + H_{3}O_{(aq)}^{+}$
0,75 0,75	1.1- Determine the final progress rate. What would you conclude? 1.2- Find out, at the equilibrium state, the expression of the reaction quotient $Q_{r,eq}$ of the chemical
	system in terms of C and pH , then calculate its value.
0,5	1.3- Deduce the value of pK_A of the pair $C_3H_7COOH_{(aq)} / C_3H_7COO^{(aq)}$.
	i l





الصفحة		الامتحان الوطنى الموحد للبكالوريا – الدورة العادية 2017 – الموضوع			
4	NS28E		– مادة: الفيزياء والكيمياء – مسلك ال		
0,5		wavelength is:			
0 7	i		$\lambda = 5cm \qquad \qquad \blacksquare \lambda = 6cm$		
0,5		speed of the wave is : 2m.s^{-1} $v=200\text{m.s}^{-1}$ v	-2		
0 77					
0,75	3- the 1 $\blacksquare t =$	instant t, at which the aspect of the surface = $8s$ $t = 0,03s$	of the water is represented, is: $t = 0,3s$ $\bullet t = 3s$		
0,75	i	-			
0,75	4- We consider a point M, on the surface of water, far from S by $SM = 6$ cm. The point M repeats the same vibration as that of S with a time delay τ .				
		his case, the relationship between the displacements of M and S is:			
	$\blacksquare y_M$	$f_t(t) = y_s(t-0,3)$ $\blacksquare y_M(t) = y_s(t+0)$,03)		
	$\blacksquare y_{k}$	$y_{M}(t) = y_{S}(t-0,03)$ $y_{M}(t) = y_{S}(t+0)$,3)		
		EXERCISE I			
			and electronic devices. The circuits of these		
	1	s contain resistors, inductors, capacitors an	d integrated circuits that perform different		
		natical or logical operations. first part of this exercise aims at studving at	ppearance and disappearance of the current in		
		ictor. The second part aims at studying the			
		Part one and part two are independen	t		
		one: Response of RL dipole to a step volta udy the RL dipole response to a step voltage			
		of physics performs with his students the e			
		shown in figure 1.	\wedge \downarrow \downarrow \downarrow L,r		
	This circuit consists of: \mathbf{E}				
	-An ideal power supply of electromotive force E=6,5V;				
		inductor (coil) of inductance L and resistance r;			
	i i	Sistor of resistance $R = 60 \Omega$; uble switch K.			
	- A ut				
	1- In th	ne first step, the teacher studied the appearan	nce of the Figure 1		
		e current in the inductor by putting K at	$U_{R}(V)$		
0.25	positio		^		
0,25	1	ppy the circuit on your answer sheet and ent the voltage u_R between the resistor	6		
		als using the receiver convention.			
0,5		nd out, in the steady state, the expression			
- ;-		electric current intensity I_p in terms of the			
		parameters.			
	1	he second step, the teacher studied the			
		earance of the electric current in the			
		or. After obtaining the steady state and			
	-	safety measures, the teacher puts at an $t = 0$, the switch K at position (2).			
	motant	t = 0, the swhen is at position (2).			
			$0 \frac{1}{2} \frac{1}{4} \frac{1}{6} \frac{1}{8} \frac{1}{1} \frac{1}{8} \frac{1}{1} $		
			Figure 2		
	:				

Moutamadris.ma

Moutamadris.ma 🌆

Moutamadris.ma 👘

7. 5. 11				
الصفحة	NS28E	ا – الدورة العادية 2017 – الموضوع	*	
7		لك العلوم الفيزيائية – خيار إنجليزية	– مادة: الفيزياء والكيمياء – مسا	
0,5	by the is $a_x =$	y applying the Newton second law, find out the r horizontal plane on the system (S), knowing that $=-3 \text{ m.s}^{-2}$.	the x-component of acceleration of G	
0,5		etermine t_c the instant when the system (S) stops	s moving.	
0,5	2.3- De	educe the value of the distance BC travelled.		
	Histo constant solids. This p of inert A torsi AB of (Δ) ha wire is We tur axis (Δ) then we We loc angular	wo: Energetic study of a torsion pendulum orically, the torsion pendulum was used by Cave int. The torsion pendulum can be used to determine part of exercise aims at determining both the tors that of a rod by exploiting the energy diagrams. on pendulum consists of a vertical steel wire of the a moment of inertia J_{Δ} about a vertical axis (Δ). is the same direction as the steel wire. One end of attached to G the centre of inertia of the rod. in the rod AB horizontally in the positive sense a) at the angle $\theta_m = 0.8$ rad to the equilibrium po- e release it without initial velocity at t=0 the origon the position of the rod at one instant of time is displacement θ to its equilibrium position (see ady the motion of the pendulum in a frame of refer	the torsion constant of some deformable sion constant of a steel wire and the moment torsion constant C and a homogeneous rod The axis (Δ) f the steel round the sition, gin of time. at the figure). the torsion constant C and a homogeneous rod the steel torsion constant C and a homogeneous rod the steel the stee	
	we study the motion of the pendulum in a name of reference A assumed Galilean. We assume the torsional potential energy to be zero at the position of equilibrium and the gravitational potential energy to be zero on the horizontal plane passes by G. All frictions are negligible. The curve of the figure on the right represents the variation of the kinetic energy E_K of the pendulum			
0,5	of the p	te the expression of the mechanical energy E_m pendulum in terms of C, J_{Δ} , θ and $\dot{\theta}$		
0.55		gular velocity.		
0,75		ermine the value of the torsion constant C steel wire.		
0,75	!	l out the value of J_{Δ} , knowing that the value		
	of the 1	maximum angular velocity of the pendulum is	$\theta(rad)$	
	$\dot{\theta}_{max} = 2$	$2,31 \text{rad.s}^{-1}$.	- 0,8 - 0,6 - 0,4 - 0,2 0 0,2 0,4 0,6 0,8	

	الامتحان الوطني الموحد للبكالوريا المسالك الدولية. خيار إنجليزية الدورة العادية 2017 - عناصر الإجابة - NR 28E		م علم من المنتخبية من المنتخبية من المنتخبية من الا مرتجا بالمرتجب من التركيم من من التركيم من التركيم من التركيم من التركيم من التركيم م	السلتة العلية وزارة التربية الونحنية والتحوين للمنس والتعليم العالم والبحث العامس الموكز التوحلذي، المقا	
3	;	فيزياء والكيمياء مدة الإنجاز		الفيزي	المادة
7		المعامل	زيائية- خيار إنجليزية	مسلك العلوم الفي	الشعبة أو المسلك

	EXERCISE I (7 points)					
	Questions	Answers	Marking	Question reference		
	Zuestions		scale	In the framework		
	1	The expression : $Q_{ri} = \frac{\left[Al_{(aq)}^{3+}\right]_{i}^{2}}{\left[Cu_{(aq)}^{2+}\right]_{i}^{3}}$	0,25	Calculate the value of the quotient of reaction Q_r of a chemical system in given state.		
		$Q_{ri} \approx 1,54$	-,			
	2	-Comparaison between Q_{ri} and K -The forward direction (sense 1)	0,25 0,25	Determine the direction of spontaneous evolution of a chemical system.		
Part I	3	$\bigcirc Al_{(S)} / Al_{(aq)}^{3+} / / Cu_{(aq)}^{2+} / Cu_{(S)} \oplus$	0,5	Draw a cell diagram / diagram of an electrochemical cell (battery)		
		- The method used - The amount of charge is : $q \approx 6,15.10^{3}C$	0,5 0,25	Establish the relationship between the amount of substance of chemical specie produced or consumed, the		
	4			current intensity and the operating duration of a battery. Use this relationship to determine other quantities (quantity of charge, progress of the reaction, change of the mass).		
P	1.1	 The progress table The final progress rate τ ≈ 0,04 or 4% The reaction is non-complete 	0,25 0,25 0,25	 -Calculate the final progress of the reaction that occurs between an acid and water taking into consideration the value of both the concentration and this acid's pH aqueous solution; then, compare it with the maximum progress. -Define the final progress rate of a reaction, and determine it using experimental data. 		
Part II	1.2	$Q_{r,\acute{eq}} = \frac{10^{-2pH}}{C - 10^{-pH}}$ $Q_{r,\acute{eq}} \approx 1,57.10^{-5}$	0,5 0,25	Calculate the value of the quotient of reaction Q_r of a chemical system in given state.		
	1.3	$pK_A \approx 4,8$	0,5	Know the relationship $pK_A = -\log K_A$		
	2.1	Increasing the rate of reaction and avoiding the lost of the substance	0,5	Justify the choice of experimental equipment to be used: reflux apparatus, fractional distillation, crystallisation and vacuum filtration.		

الصفحة 2 4	NR28E	الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2017 – عناصر الإجابة – مادة: الفيزياء والكيمياء – مسلك العلوم الفيزيائية – خيار إنجليزية			
	2.2	-Experiment 1: $t_{1/2} \approx 8 \min$ -Experiment 2: $t_{1/2} \approx 2 \min$ -The reaction of the Experiment 2 is the fastest.	0,25 0,25 0,25	Determine the half-life t1/2 of the chemical reaction graphically or through exploiting the experimental results.	
	2.3	-Experiment1: 0,67 or 67% -Experiment 2: 1 or 100% -The reaction of the Experiment 2 is complete.	0,25 0,25 0,25	 -Define the final progress rate of a reaction, and determine it using experimental data. -Know the characteristics of esterification and hydrolysis: non-complete and slow transformations. - Know the characteristics of the reaction of an anhydrous acid with an alcohol: fast and complete. 	
	2.4	The structural formula of the butanoic anhydride.the equation of the reaction .	0,25 0,5	Write the equation of the reaction of an anhydride acid with an alcohol	

	EXERCISE II (2,5 points)					
Questions	Answers	Marking scale	Question reference in the framework			
1	$\lambda = 4cm$	0,5	- Exploit experimental documents			
2	$v = 2 m.s^{-1}$	0,5	and data in order to determine:			
3	t = 0,03 s	0,75	* distance; * time delay;			
4	$y_M(t) = y_S(t - 0, 03)$	0,75	* wave speed. -Know (Recall) and use the relationship $\lambda = v.T$ - Know the relationship between displacement of a point from the propagation medium and the source displacement: $y_M(t) = y_S(t - \tau)$.			

	EXERCISE III (5 points)				
	Questions	Answers	Marking scale	Question reference in the framework	
	1.1	Representation of u _R	0,25	-Represent the voltages (Electric Potential Difference) u_R and u_L using the receiver	
	1.2	$I_p = \frac{E}{R+r}$	0,5	convention. - Find out the differential equation and verify its solution when the RL dipole is	
	2.1	the differential equation	0,5	submitted to a step voltage.	
	2.2	$\tau = \frac{L}{R+r}$	0,5	- Determine the current's intensity expression $i(t)$ when the RL dipole is submitted to a step voltage, and deduce	
Part I	2.3	a- Finding the value of r b-checking the value of L	0,5 0,5	 the voltage expressions between the inductor's terminals and the resistor terminals. -Know and exploit the time-constant expression. Determine the two characteristics of the inductor (the inductance L, the resistance r) exploiting experimental results. 	
	2.4	The method $\mathscr{E}_{\rm m} \simeq 1, 2.10^{-4} {\rm J}$	0,25 0,25	- Know and exploit the expression of the magnetic energy stored in a inductor.	
Part II	1	*Finding the expression of $u_s(t)$ * $A = k.P_m.U_0$ * $m = \frac{S_m}{U_0}$	0,25 0,25 0,25	 -Know that the amplitude modulation process is to transform the modulated amplitude voltage to affine function of the modulating voltage. -Recognise the stages of the amplitude modulation. 	
I	2.1	$f_m = 100 \text{ Hz}$ 0,25 -know the rover mod		-know the required conditions to avoid over modulation.-Exploit the different experimental	
	2.2	m = 0, 5 Good amplitude modulation	0,25 0,25	obtained curves.	

		EXERCIS	SE IV (5,5 poin	ts)
	Questions	Answers	Marking scale	Question reference in the framework
	1.1	Finding the differential equation	0,5	
	1.2	$b \approx 3,6 \mathrm{m.s^{-2}}$ $c = 0$	0,25 0,25	-Know Newton's second law $\Sigma \overrightarrow{F_{ext}} = m. \frac{\Delta \overrightarrow{V_G}}{\Delta t}$ and $\Sigma \overrightarrow{F_{ext}} = m. \overrightarrow{a_G}$ and
		$t_B = \frac{V_G}{h}$	0,25	$\Sigma F_{ext} = m. \frac{\Delta t}{\Delta t}$ and $\Sigma F_{ext} = m. a_G$ and
	1.3	$t_B = \frac{b}{b}$ $t_B \approx 6,9s$	0,25	its range of validity.Apply Newton's second law to find out
P	1.4	$R = \sqrt{f^2 + (m.g.\cos\alpha)^2}$	0,25 0,25	the differential equation of a system's centre of inertia motion in horizontal or inclined plane and determine the
Part I		$R \approx 586, 6N$		characteristics of kinetic and dynamic
	2.1	$f' = -m.a_x$ f' = 195 N	0,25 0,25	quantities of motion.Know and apply the Euler's method to solve approximately differential equation.
	2.2	$t_{c} = -\frac{v_{B}}{a_{x}}$ $t_{c} = 8,33 s$	0,25	
	2,3	BC = $\frac{1}{2}a_x \cdot t_c^2 + v_B \cdot t_c$ BC $\approx 104, 2 \text{ m}$	0,25 0,25	
	1	$E_{m} = \frac{1}{2}C.\theta^{2} + \frac{1}{2}J_{\Delta}.\dot{\theta}^{2}$	0,5	 Know and exploit the expression of the mechanical energy of a torsion pendulum. Exploit the energy diagrams
Part II	2	$C = \frac{2.E_{p}}{\theta^{2}}$ C = 5.10 ⁻² N.m.rad ⁻¹	0,5 0,25	 - Exploit the energy diagrams -Know and exploit the expression of the torsional potential energy. - Exploit the conservation and the non-conservation of the mechanical energy of
	3	$J_{\Delta} = \frac{2.E_{Kmax}}{\theta_{max}}$ $J_{\Delta} = 6.10^{-3} \text{ kg.m}^2$	0,5 0,25	the torsion pendulum.