الصفحة 1 7	ريا	<mark>حان الوطني الموحد للبكالو</mark> المسالك الدولية — خيار أنجليزية	الأمة	+•ZNAX+ I NEVOXO +•E•LI•@+ I \$@XEX •I•E\$0 A \$@E\$+1X ******* A \$@@NEA •J•XNN• A \$0%** •E•@@•I	السلحة المعرية وزارق التربية الولمنية والتحوين المعنى والتعليم المالم والبحث العلمي
*		الدورة الأستدراكية 2018 -الموضوع-	RS28E	للتقويم والامتحانات لتوجيه	المركز الوطني وا
3	مدة الإنجاز المعامل	الكيمياء طوم الفيزيائية – خيار أنجليزية	شعبة العلوم التجريبي	المادة الشعبة أو المسلك	

The use of non-programmable scientific calculator is allowed

This exam paper consists of four exercises

Literal expressions should be given before doing numerical calculations

EXERCISE I (7 points):

- Study of the electrochemical cell: zinc-copper.
- Study of hydrolysis of an ester.

EXERCISE II (2,5 points):

- Study of the disintegration of plutonium-241.

EXERCISE III (4,5 points):

- Response of the RL dipole to a step-up voltage.
- Demodulating an amplitude-modulated wave.

EXERCISE IV (6 points):

- Study of a charged particle motion in a uniform magnetic field.
- Energetic study of a simple pendulum.

الصفحة	RS28E	الامتحان الوطني الموجد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع					
7		 – هادة: الفيزياء والكيمياء – هعبة العلوم التجريبية مسلك العلوم الفيزيائية – حيار أنجليزية 					
Marking scale		EXERCISE I (7 points) Part one and part two are independent					
	Part	one : Study of the electrochemical cell, zinc-copper					
	During the functioning of the electrochemical cell, a part of the chemical energy is converted to an electrical energy. In this part, we study the functioning principle of the electrochemical cell, zinc-copper. We build the zinc-copper cell using the following tools and materials: -A beaker contains an aqueous solution of zinc sulphate $Zn_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ of molar concentration $C_1 = 1 mol.L^{-1}$;						
	-An	other beaker contains an aqueous solution of copper sulphate $Cu_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ of molar					
	concentration $C_2 = 1 \mod L^{-1}$; -A plate of zinc and another one of copper; -A salt bridge. In series, a resistor and an ammeter are connected between the electrochemical cell electro When we switch on the circuit, the ammeter indicates a steady electric current of intensity I = 0,3 A.						
	- F	Faraday constant: $1 F = 9,65.10^4 C.mol^{-1}$;					
	- T	The atomic molar mass of copper: $M(Cu) = 63, 5 g.mol^{-1}$;					
	-] <i>K</i>	The equilibrium constant associated with the reaction: $Cu_{(aq)}^{2+} + Zn_{(s)} \xleftarrow{(1)}{(2)} Cu_{(s)} + Zn_{(aq)}^{2+}$ is -1.7.10 ³⁷					
0,5 0,5 0,5 0,75	1. 2. 3. 4. for	Calculate $Q_{r,i}$ the reaction quotient at the initial state of the chemical system. Deduce the spontaneous direction of the evolution of the chemical system. Write the half-equation of the chemical reaction at the cathode. Calculate m(<i>Cu</i>) the mass of copper deposited when the electrochemical cell is carried out $\Delta t = 5h$.					
	Part t Ci whic This hydi	wo: Study of hydrolysis of an ester haracteristics and products of hydrolysis of an ester depend on the nature of the medium in ch this reaction was taking place. s part aims at studying both the hydrolysis of an ester in acidic medium and the base rolysis of this ester.					
	1-H	ydrolysis of methyl ethanoate					
	In a 0,6 dro At c	In erlenmeyer flask, a mixture of 0,6 mol of pure methyl ethanoate $CH_3 - CO_2 - CH_3$ and mol of distilled water is heated under reflux for a certain time, in the presence of few ps of concentrated sulphuric acid. A chemical reaction occurs. equilibrium state, the remaining amount of substance of the methyl ethanoate is 0,4 mol.					
0,5	1.	1. What is the role of the sulphuric acid?					
0,5	1.2	2. State two characteristics of this reaction.					
0,5	1.3. Choose, from the following experimental set-ups (a), (b) and (c), the one that represents heating under reflux.						

At any instant t of time, the relationship, between the progress of reaction x(t) and the conductance of the mixture G(t), is written as:

 $x(t)=-6,3.10^{-2}.G(t)+1,57.10^{-3}$, where G(t) is expressed in siemens (S) and x(t) in mole (mol).

الصفحة	DEJOE	الامتحان الوطني الموجد للركالوريا – الدورة الاستدراكية 2018 — الموضوخ						
4	RƏZOE	– ماحق: الفيدياء مالكيمياء — هجية العامة التحدينية مساك العامة الفيديائية — حيار أبدايدية						
0,75	2.2.1.	Calculate the value of $G_{1/2}$ the conductance of the reaction mixture when $x = \frac{x_{max}}{2}$;						
	where	\mathbf{x}_{max} is the maximum progress of the reaction.						
0,5	2.2.2.	Deduce, in minute, the value of the half-life $t_{1/2}$ of the reaction.						
		EXERCISE II (2,5 points)						
0,75 0,75 1	Study The pl transfe The di Given -Ma -Ma - Iu - Ha 1. Wr 2. Cal nucleu 3. The $t_1 = 28$	Study of the disintegration of plutonium-241: The plutonium-241 is radioactive element which does not exist in nature. It is produced by nuclear transformations of the uranium- 238. The disintegration of the plutonium ${}^{241}_{94}$ Pu produces the americium ${}^{241}_{95}$ Am and a particle X. Given : -Mass of the nucleus ${}^{241}_{95}$ Am : $m({}^{241}_{95}$ Am) = 241,00471u; -Mass of the nucleus ${}^{241}_{94}$ Pu : $m({}^{241}_{94}$ Pu) = 241,00529 u; -Mass of the particle X: $m(X) = 0,00055 \text{ u}$; - $1u = 931,5 MeV.c^{-2}$; - Half-life of the nucleus ${}^{241}_{94}$ Pu is $t_{1/2} = 14,35 years$. 1. Write the equation of this disintegration, and determine the type of the radioactivity of ${}^{241}_{94}$ Pu. 2. Calculate, in MeV, the energy released (produced) E_{pro} during this disintegration of the nucleus ${}^{241}_{94}$ Pu. 3. The initial activity of a sample of plutonium is $a_0 = 3.10^6 Bq$. Find out its activity a_1 at $t_1 = 28.70 years$						
		EXERCISE III (4.5 noints)						
	Inductors (coils) are considered as main parts in the make-up of a number of electric devices that we use in our daily life. This exercise aims at determining the experimental value of the inductance of an inductor of an electric blender over studying response of RL dipole submitted to a step-up voltage, and studying main stages for demodulating an amplitude-modulated wave.							
		Part one and part two are independent						
	Part of In or perfor The se -An i -A re -A se	The experimental set-up sketched in figure 1. The experimental set-up						

الصفحة	RS28E	الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2018 – الموضوع RS28E									
7		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	- خيار اڼجا	وم الغيزياؤية -		ورووية مسلك	هعية العلوم الة	ء والكيمياء —	مادة: الغيزيا	- [
	At an $u_{L}(t)$ The fi	instant of the between te	time t=0, erminals	we switch of the indu	n on ictor	the circui	t. Using a da	atalogger to	visualize t	he volt	tage
0,25	1. Co	py the circ	wit in fig	gure 1 (pag	$u_{\rm L}$ (e 4)	on your a	inswer sheet	t and show t	here how t	o conn	ect the
0.5	dat	alogger to	visualiz	e the volta	ge u n of	L(t).		_▲ u _L (V)			
0,5	2. The interview of the circ	ensity i(t)	of the cu	rrent flow	ing 1	through the	is 9				
0,5	3. Kn	owing that	t the exp	ression of	the o	electric	6				
	cui	rent intens	sity is: i($t) = \frac{E}{R}(1 - $	$e^{-\frac{R}{L}}$	^t). Find o	ut 3				
	the	the expression of the voltage u_L in terms of t,				 >					
0.5	E,	R and L.	volue of	the velter	o h	two	0	1	2 3	4	t(ms)
0,5	4. Ca ter	minals of t	he induc	the voltage tor at $t = 1$	wh	here τ is t	he	Figu	re 2		
0,75	5. De	termine gr	aphically	y the value	of	τ then de	duce the val	ue of the ind	luctance L	of the	
0,75	6. Ca	culate the	magneti	c energy s	tore	d in the ir	ductor at t =	=τ.			
	The f radio)	wo : Dem igure 3 sho to receive	odulatin ows the s amplitud Antenna	implified de-modula	ted i	ae modul iit scheme radio wav D M 7///7	ated wave of an expense. $= \frac{1}{C_1} \qquad R_1$	rimental set	up of a de	vice (A	ΔM
			1 a	111		1	Figure 3	1 411	5		
	Conv	on your a	nswer e	heet the r	յլլՠ	her of au	estion with	the letter o	f the corr	ect and	swer
0,5	1. The bung circuit (part 1) is consisted of an antenna and an inductor of inductance $L = 10mH$ and of negligible resistance. The inductor is connected in parallel to a capacitor of adaptable capacitance C. The capacitance C of the capacitor which allows to select the radio wave of frequency $f_0 = 530$ kHz is:										
	Α	9µ1	ſŢ.	B	9 r	ηF	С	9 pF	D	9 mF	7
0,5	2. Kno resista wave	by that note R_1 what is $R_1=35\Omega$	the valu ich perm	e of the av nits to get a	erag 1 hig	ge frequen sh quality	cy of the so of envelope	und is 1kHz detection o	and the van the studie	alue of ed radio	the D

Moutamadris.ma 🎲

الصفحة	RS28F	الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 – الموضوع				
7	ROEDE	 ماحة: الفيزياء والكيمياء - هعبة العلوم التجريبية مسلك العلوم الفيزيائية - حيار أنجليزية 				
7	Part t A gi (girl-s lenght The si In equ At an veloci $E_{k_0} =$ its am We lo angula Assum the ho (refere The st refere All fri Given - The - The - In th	wo : Energetic study of a simple pendulum rl oscillates back and forth using a swing hanged to a fixed support. The mechanical system wing) can be modelled on simple pendulum which is composed of a massless string of L and of a solid (S) its mass is m and its dimensions are negligible to the lenght L. mple pendulum is a particular case of the physical pendulum. ilibrium, the simple pendulum is undisturbed (at rest). instant of time t=0, the pendulum is launched from its equilibrium position by an initial ty in the positive direction when the kinetic energy 13,33 J. The pendulum made a sinusoidal oscillatory motion; plitude is $\theta_{max} = 0,20 rad$. cate the position of the pendulum at an instant t of time by the ar displacement θ. (see figure 2) ning the gravitational potenial energy to be zero $(E_{pg}=0)$ on rizontal plane passing through the equilibrium position $\theta = 0$ ence level). udy concernes small oscillations in a Galilean frame of nee linked to the Earth. ctions are negligible. :: length of the simple pendulum is L=2m; strength of the gravitational field is $g=9,8m.s^{-2}$; e case of small oscillations; $cos\theta \approx 1-\frac{\theta^2}{r}$, where θ is expressed in radians;				
	- In the case of small oscillations: $\cos\theta \approx 1 - \frac{1}{2}$, where θ is expressed in radians;					
	- 1 rigo	Showetric formula: $\cos^2\theta + \sin^2\theta = 1$.				
0,5	1. By	using the dimensional analysis, show that the following expression $T_0 = 2\pi \sqrt{\frac{L}{g}}$ is				
0.75	homo	geneous to the time. 2π				
0,75	2. 1 ne	e equation of motion of the pendulum is expressed as: $\theta(t) = \theta_{max} \cdot \cos(\frac{1}{T_0}t + \phi)$.				
	Deter	nine, in S.I units, the values of T_0 and φ .				
0,5	3. Sho	$E_{pg}(t) = \frac{1}{2} \text{m.g.L.} \theta_{max}^2 \cdot \cos^2(\frac{2\pi}{T_0} t + \varphi).$				
0,75	4. Sho	w that the expression of the mechanical energy is given by: $E_m = \frac{1}{2} m.g.L.\theta_{max}^2$.				
0,5	5. By solid (using the principle of conservation of the mechanical energy, calculate the mass m of the (S).				

الصفحة 1 3	ريا	ن <mark>حان الوطني الموحد للبكالو</mark> المسالك الدولية – خيار أنجليزية	الام	+•2847.57 + 1 NE40569 +•E-all=0+ 1 \$0XE5 = 0=00 A \$0C15++X =##80Hal A \$00NEA =0=X840 A \$0X##S =E=000=1	المبلحة المغرية وزارق التربية الولمنية والتحوين المعني والتعليم العالم والبحث العلمي
*		الدورة الاستدراكية 2018 -عناصر الإجابة -	RR28E	للتقويم والامتحانات لتوجيه	المركز الوطني وا
3	مدة الإنجاز	الكيمياء	الفيزياء و		المادة
7	الشعبة أو المسلك أعبة العلوم التجريبية : مسلك العلوم الفيزيانية – خيار أنجليزية المعامل				

		E	(7 points)	
	Ouestions	Answers	Marking	Question reference
			scale	In the framework
	1	$Q_{r,i} = 1$	0,5	-Calculate the value of the quotient of reaction
	2	Direction (1)	0,5	Q_r of a chemical system in given state.
	2			-Determine the direction of spontaneous
		At the cathode :	0,5	evolution of a chemical system.
	3	$Cu_{(a)}^{2+} + 2e^{-} Cu_{(a)}$		-Write the half-equation that occurred in each
		$\frac{(aq)}{I} \wedge M(Cu)$	0.5	electrode (use double arrows) and write the
Par		$m(Cu) = \frac{T.\Delta t. WI(Cu)}{T.\Delta t. WI(Cu)}$	0,5	overall equation of the reaction during the
t I		2.F		battery functioning (use one arrow).
		$m(Cu) \approx 1,78 \text{ g}$	0,25	-Establish the relationship between the amount
	4		-	of substance of chemical specie produced or
	-			consumed, the current intensity and the operating
				duration of a battery. Use this relationship to
				determine other quantities (quantity of charge,
				progress of the reaction, change of the mass).
	1.1	Catalyst (it speeds up the		-Know that a catalyst is a chemical specie that
			0,5	increases the rate of a chemical reaction without
		reaction)		changing the equilibrium state of the system.
	1.2			-Know the characteristics of esterification and
		Slow and non-complete 0,25 (limited)	0,25x2	hydrolysis: non- complete and slow
				transformations.
	1.2	Set-up (C)	0,5	-Know the experimental set-up of an acid-base
	1.5			titration.
	1.4	Equation of reaction	0,75	- Write the esterification and the hydrolysis
Pa			0.5	equation.
rt I		-Expression of K. $V = 0.25$	0,5	- Know that, the reaction quotient in equilibrium
	1.5	- K = 0,23	0,23	$Q_{r,eq}$, associated to the reaction equation of a chemical system takes a value independent of
				concentrations, called equilibrium constant K.
		A _{co} : CH ₂ -OH _{co}	0,25	-Write the equation of the reaction of an
		$= -(\ell) =$	0,25	anhydrous acid with an alcohol and that of the
	2.1	$B_{(aq)} : CH_3 - CO_{2(aq)}$		basic hydrolysis of an ester.
		- Method	0,5	-Exploit the different curves of time-evolution of
	2.2.1	- $G_{1/2} \approx 17 \mathrm{mS}$	0,25	the following:
	<i>4,4,</i> 1	1/2		the amount of substance of a chemical specie, its

الصفحة الامتحان الولني الموحد للبكالوريا – الدورة الاستدراكية 2018 – عناصر الإجابة عادة: الغيرياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الغيريائية – حيار أنجليزية

			concentration, the progress of a reaction,
			conductivity, conductance, pressure and volume.
2.2.2	Let consider any value of $t_{1/2}$ in the following interval $17 \min \le t_{1/2} \le 18 \min$	0,5	-Define the half-life $t1/2$ of a chemical reaction. -Determine the half-life $t_{1/2}$ of the chemical reaction graphically or through exploiting the

	EXERCISE II (2,5 points)						
Questions	Answers	Marking scale	Question reference In the framework				
1.	 Equation of disintegration The radioactivity's type is β⁻ 	0,5 0,25	 Know and exploit the two laws of conservation. Write the equation of a nuclear reaction by applying the two conservation laws. Recognise the type of radioactivity using the equation of a nuclear reaction. 				
2.	- Method - $E_{pro} \simeq 2, 8.10^{-2} MeV$	0,5 0,25	- Calculate the energy released (produced) by a nuclear reaction: $E_{pro} = \Delta E $.				
3.	- Method - $a_1 \approx 7, 5.10^5 Bq$	0,5 0,5	 Know and exploit the law of the radioactive decay, and exploit its curve. Know that 1Bq is equal to one decay per second. Exploit the relationships between τ , t_{1/2} and λ (decay constant). 				

	EXERCISE III (4,5 points)						
	Questions	Answers	Markin g scale	Question reference In the framework			
	1.	How to connect the datalogger to monitor the voltage $u_L(t)$	0,25	Know how to connect an oscilloscope and a datalogger to monitor different voltages.			
	2.	Differential equation : $\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$	0,5	- Find out the differential equation and verify its solution when the RL dipole is submitted to a step voltage.			
	3.	$u_{\rm L}(t) = {\rm E.e}^{-\frac{{\rm R.t}}{{\rm L}}}$	0,5	- Determine the current's intensity expression $i(t)$ when the RL dipole is submitted to a step voltage, and deduce the voltage.			
Part I	4.	$u_{L}(\tau) = E.e^{-1} = 0,37.E$ $u_{L}(\tau) \approx 3,3 V$	0,25 0,25	expressions between the inductor's terminals and the resistor terminals.			
	5.	$\tau = 1 \text{ ms}$ L $\approx 10^{-2} \text{ H}$	0,25 0,5	 Know and exploit the time-constant expression. Exploit experimental documents in order to determine the time-constant. 			
	6.	 Expression of E_m E_m ≈1,6.10⁻³ J 	0,5 0,25	- Know and exploit the expression of the magnetic energy stored in a inductor.			

الصفحة	RR28E	الامتدان الوطني الموجد للبكالوريا – الدورة الاستدراكية 2018 – عناصر الإجابة	
3		 ماحة: الغيرياء والكيمياء — هعبة العلوم التجريبية مسلك العلوم الغيريائية — حيار أنجليرية 	

	1. Answer : C 0,5	0,5	 Know the stages of demodulation. Know the conditions allowing to get an amplitude modulation and a high quality detection envelope. Know the selective role of the LC (bung 			
Par	2.	Answer : B	0,5	detection envelope.Know the selective role of the LC (bung		
tII	3.	Answer : C	0,25	 circuit) for the modulated voltage. Recognise the essential components required to assemble an AM radio, and their roles in the demodulation. Know the role of different used filters. 		

	EXERCISE IV (6 points)			
	Questions	Answers	Marking	Question reference
		$D_{1}(1) = O^{2}$	scale 0.25	- Know the characteristics of Lorentz force and the
Part I	1.	Path (1): O	0,25	rule to determine its direction
		Path (2): $He^{2^{+}}$		Apply Newton's second law in the charged
	2.	- Newton's second law	0,25	0,25 - Apply Newton's second law in the charged
		- Using Frenet frame	0,25	\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow
		- Uniform motion	0,25	<i>B</i> perpendicular to v_0 in order to determine the
		-Circular motion	0,23	type of motion.
	3.	$\frac{K_{0^{2-}}}{4} = 4$	0,5	- Know the components of the acceleration vector in
		$R_{He^{2+}}$		Cartesian coordinate system and in Frenet frame.
	4.			
		Method	1	
Part II	1.		0,5	- Use of the dimensional analysis (dimensional
		Method		equations)
			-) -	- Know the meaning of the physical quantities
	2.	$T_0 \approx 2.8 \text{ s}$	0,25	involved in the expression of the time-equation
		π	0,5	A(t) for the physical pendulum and determine
		$\phi = -\frac{\pi}{2}$ rad		<i>b</i> (<i>t</i>) for the physical pendulum and determine
	3.	Method	0,5	them using the initial conditions.
				- Know the expression of the natural period for the
				Simple pendulum.
	4.			- Exploit the expression of the gravitational
		Method	0,75	potential energy and the expression of the kinetic
				energy to determine the mechanical energy of the
	5.	- Method	0.25	Exploit the conservation of the machanical express
		$m \approx 34 k\sigma$	0.25	- Exploit the conservation of the mechanical energy
		- m~J+K5	0,20	of a physical pendulum in the small oscillations
				case.