الصفحة 1 6	ريا	الامتحان الوطني الموحد للركالو المسالك الدولية — خيار أنجليزية	للمملكة للمغربية وزارق التربية الموضنية موزارق التربية الموضنية مالتكوين المهنبي مالتعليم العالم والبحث العلمي
*		RS27E الدورة الاستدراكية 2018 -الموضوع-	المركز الوطني للتقويم والإمتحانات والتوجيه
3	مدة الإنجاز	الفيزياء والكيمياء	المادة
5	المعامل	مسلك علوم الحياة والأرض – خيار أنجليزية	الشعبة أو المسلك شعبة العلوم التجريبية

> The use of the non-programmable scientific calculator is allowed.

➢ Give the literal expressions before every numerical application.

This exam paper consists of four exercises: one in chemistry and three in physics.

•	Chemist	y: Ethanoic acid and its utilizations	(7 points)
•	Physics:		(13 points)
	0	Exercise 1: Uranium-Thorium dating method	(3 points)
	0	Exercise 2: Studying the response of a dipole	(5 points)
	0	Exercise 3: Studying the motion of a cyclist in a circuit	(5 points)

6

- ماحة: الغيرياء والكيمياء - هعبة العلوم التجريبية مسلك علوم الحياة والأرض- خيار أنجليرية

scale	Subject
	Chemistry (7 points): Ethanoic acid and its utilizations
	The Ethanoic acid of formula CH_3COOH represents the principal constitutent of commercial
	 vinegar after water. It is used as a reactive in a few organic syntheses, like the one that leads to the Ethyl ethanoate. The degree of acidity of vinegar is given by degree (°). This exercise consists of 3 different parts, and aims at: Studying an aqueous solution of ethanoic acid; Determining of the degree of acidity of commercial vinegar; Studying the synthesis of Ethyl ethanoate from the ethanoic acid.
	- The degree of acidity of vinegar is equal to the mass, in grams, of the pure acid that contains 100 mL of vinegar.
	$- pK_A(CH_3COOH(aq)/CH_3COO(aq)) = 4.8 \text{ at } 25^{\circ}C; M(CH_3COOH) = 60 \text{ g.mol}^{-1}$
0,5 0,5	 Part 1: Studying an aqueous solution of ethanoic acid The measurement of pH of an aqueous solution of ethanoic acid, at 25°C, gives pH = 3,0. 1. Write the chemical equation of the transformation between the ethanoic acid and water. 2. Determine the predominant substance of the pair (CH₃COOH(aq)/CH₃COO⁻(aq)) in this solution. Justify
1	3. Determine the value of the reaction quotient $Q_{r,eq}$ at the equilibrium of the chemical system.
0,5	4. Will the value of $Q_{r,eq}$ be modified if we dilute the solution of the ethanoic acid? Justify.
	The tag of a bottle of commercial vinegar indicates 6°. The molar concentration of ethanoic acid in this vinegar is C_0 . We intend to make a pH-titration of this vinegar to determine its degree of acidity. For this, we prepare an aqueous solution (S_1) with 10 times dilution of the commercial vinegar, and we take a volume $V_A = 25 \ mL$ of the diluted solution (S_1) of molar concentration $C_A \left(C_A = \frac{C_0}{10}\right)$ which we titrate with an
	aqueous solution (S_2) of Sodium Hydroxide $Na^+_{(aq)} + HO^{(aq)}$ of molar concentration
	$C_B = 2,5.10^{-1} mol.L^{-1}$.
0,5 0,75 0,75	At the equivalence, the volume added of the solution (S_2) is $V_{B,E} = 10 \ mL$. 1. Write the equation of reaction of titration (supposed total). 2. Calculate the value of C_A . And deduce the value C_0 . 3. Verify the value of the degree of acidity of vinegar indicated in the tag of the bottle.
	<u>Part 3</u>: Studying the synthesis of Ethyl ethanoate from the ethanoic acid. In a round-bottom flask, we pour an equimolar mixture of $n_1 = 0, 3 \text{ mol}$ of ethanoic acid and $n_2 = 0, 3 \text{ mol}$ of ethanol, and some drops of concentrated sulfuric acid. At the equilibrium of the chemical system, the amount of matter of Ester formed is: $n_f(ester) = 0, 2 \text{ mol}$. The synthesis of the Ethyl ethanoate is described in the equation of reaction: $CH COOPH + CH OH \longrightarrow CH COOC H + H O$
0,75 0,25 0,5 0,5	 I. Identify the organic functional groups of the organic molecules present in the equation of synthesis. 2. Give the characteristics of this reaction. 3. Determine the value of the yield of this synthesis. 4. Determine the value of the equilibrium constant K associated to the chemical equation of esterification.

الصفحة 3 6	R	S27E	الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 – الموضوع – ماحة: الفيزياء والكيمياء – هجية العلوم التجريبية مسلك علوم الحياة والأرض – خيار أنجليزية							
0,5	5. T etha	5. To synthetize the Ethyl ethanoate in a fast and total transformation, it is possible to replace the ethanoic acid by one of its derivatives. Give the displayed formula (semi-developed) of this derivative.								
	GIV									
					T Hysics (rs hou	115)			
	Exe	ercise 1	(3 points): Uraniu	ım-J	Thorium dating	method	1	. 234		
	The	marin maina	e sediments contain	n the Loui	2^{30} The mass of the second seco	and the	e ura	$mium \frac{234}{92}Uw$	rith di	fferent percentages
	acce disi	nteora	to their ages. The t tion of the uranium	nori ²³⁴ 1)	um ₉₀ 1 n presen. Uduring time.	i in ine	se se	uimenis come	s jroi	m the spontaneous
	The	aim o	f this exercise is to	stud [*]	withe disintegrati	on of u	ranii	$um_{02}^{234}U$.		
	Dat	a:		•		0		92		
	- Th	ne ener	gies of mass of the 1	nucle	ei and the nucleus	of ura	nium	234:	N	ucleus ^{234}U
		Fr	pergy of mass (MeV)	86321 9		142	3418 5	11	$\frac{1}{2180091}$
)	00321,9		1.	,5410,5		21000),1
0,75	3. Crigh The	Copy or t optio bindir A	a your answer sheet n (A,B,C or D). ag energy of uraniur $1,65.10^3 MeV$	the r n $^{234}_{92}$ B	number of the que $\frac{y}{1}$ is: $\frac{1}{1,73.10^3 MeV}$	c	and v	write the letter $5.10^3 MeV$	Corre	esponding to the $1,98.10^3 MeV$
	4. We consider a sample of a marine sediment which was formed at an instant $t_0 = 0$. This sample contains N_0 nucleus of uranium (without thorium nucleus). We name a_0 the radioactivity of the sample at an instant $t_0 = 0$ and a the radioactivity of the sample at									
	The	curve	i.	nts t	he variations of <i>I</i>	$n\left(\frac{a_0}{a_0}\right)$		† In ($\left(\frac{a_0}{a_0}\right)$	
	in	functio	on of time.			(a)				
0,5	4.1.	Deteri stant	nine, graphically , t l of uranium 234 w	he va ith t	alue of the radioa he unit (vear ^{-1}).	ctivity				
0,5	4.2.	The st	udy of the sample a	t an	instant t_1					
	(the	age of	the sample) shows	that	$\frac{a_0}{a} = \sqrt{2} \ .$			1,4		
	Det unit	ermine (year)	the value of t_1 the a.	age o	of the sample with	n the		0 5.1	10 ⁵	t(year)
	Exe	ercise 2	2 (5 points): Studyi	ng tl	he response of a	dipole				
	Eleo beh The	ctric ci aviors aim o - S	rcuits or electronic according to their i f this exercise is to: tudy of the respons	circ ise. e of	uits contain capa RC dipole to a st illations and the	ecitors	and i age.	nductors whi	ch ha ^T serie	ve different

Moutamadris.ma

الصفحة	RS27E	الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 – الموضوع				
6		 – هادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك علوم المياة والأرخى – خيار أنجليزية 				
	1. Motion The cyclis the same s The cyclis frame of r Data:	a of the cyclist in the section AB at exerts an effort, between A and B, modeled by a horizontal force \vec{F} supposed constant in the sense of the motion of <i>G</i> . It starts off without initial velocity from position A. To study the motion of <i>G</i> , we choose the efference (A, \vec{i}) linked to the Earth and supposed Galilean. We choose at $t_0 = 0$, $x_G = x_A = 0$				
1	$m = 70 \ kg$ 1.1. Apply written as:	; $g = 10 \text{ m.s}^{-2}$; $F = 180 \text{ N}$; $f = 80 \text{ N}$; $AB = 60 \text{ m}$ ving Newton's second law, prove that the expression of the acceleration of motion of G is : $a = \frac{F - f}{m}$.				
0,5 0,5 0,5	1.2. Determine, by justification, the nature of the motion of G . 1.3. Calculate the value of the t_B the instant when G passes by B . 1.4. Determine the value of the speed v_B of G when it passes by B .					
0,75	1.5. Determine the section <i>A</i> .	mine the magnitude of \vec{R} , the force exerted by the plane on the system during its motion in <i>B</i> .				
	2. Motion	of the cyclist during the jump				
	The cyclis plane (see During the of G , in a choose the The param	It leaves the section BC in C with a velocity \vec{v}_0 which makes an angle α with the horizontal figure (2)- page 5/6). The jump, the system {Cyclist – Bicycle} is submitted to its weight only. We study the motion in orthonormal frame of reference (C, \vec{i}, \vec{j}) linked to the Earth and supposed Galilean. We is instant when G passes by C like a new origin of time $t_0 = 0$. The tric equations of motion of G during the free-fall are written as: $x_G(t) = (v_0 \cdot \cos \alpha)t$; $y_G(t) = -\frac{1}{2}gt^2 + (v_0 \cdot \sin \alpha)t$				
0,5 0,5 0,75	During its system fal Data: 2.1. Prove 2.2. Does 2.3. Detern	motion, <i>G</i> achieves the summit of the trajectory at the instant $t_s = 0,174 \ s$ and then the ls on the ground at the instant $t_p = 1 \ s$. $\alpha = 10^\circ$; $L = 8 \ m$; $g = 10 \ m.s^{-2}$ that $v_0 = 10 \ m.s^{-1}$. the cyclist exceed the trench? Justify. mine the coordinates of the vector velocity \vec{v}_p of <i>G</i> at the instant t_p .				

الصفحة 1 4			الامتحان الوطني الموحد للبكالوريا المسالك الدولية – خيار أنجليزية 12018 الدورة الاستدراكية 2018 -عناصر الإجابة-	+•XHAX +•C=U=0+ A \$0E\$ A \$00HCA +•AH	الملكة المنهية المنهية ورزارة التربية الولمنية والتكوين للمنبي والتقويم والإمتد والتوجيه
			ليزياء والكيمياء لك علوم الحياة والأرض – خيار أنجليزية المعامل 5	الا لتجريبية : مس	المادة الشعبة أو المسلك
			Chemistry	(7 points)	
Exe	cise	Question	Answer elements	Scale	Reference of the question in the Reference Framework
		1.	$CH_3 - COOH(aq) + H_2O(\ell) \rightleftharpoons CH_3 - COO^{-}(aq) + H_3O^{+}(aq)$	0,5	- Write the equation of the acid-base reaction and identify the two pairs involved.
		2.	The predominant chemical species CH_3COOH ; Justification	2x0,25	- Indicate the predominant chemical species taking into consideration pH of aqueous solution and pK_A of pair acid/base.
Chemistry	Part 1	3.	Method ; $Q_{r,eq} = 1,58.10^{-5}$	0,75+0,25	 -Give and exploit the expression of the reaction quotient Q_r through the reaction equation. -Calculate the value of the quotient of reaction Q_r of a chemical system in given state.
(7 points)		4.	No; Justification	2x0,25	- Know that the reaction quotient in equilibrium $Q_{r,eq}$, associated with the reaction equation of a chemical system, takes a value independent of concentrations, called equilibrium constant K.
	Р	1.	$CH_3 - COOH(aq) + HO^-(aq) \rightarrow CH_3 - COO^-(aq) + H_2O(\ell)$	0,5	-Write the equation of titration reaction (use only one arrow)
	art 2	2.	Get through : $C_A = 0,1 \text{ mol.}L^{-1}$ et $C_0 = 1 \text{ mol.}L^{-1}$	0,5 + 0,25	-Determine and exploit the point of equivalence.
		3.	Verification of the value	0,75	

سفحة 2 4			RR27E	· الدورة الامتحراكية 2018 – عناحر الإجابة التجريبية مساك غلوم الحياة والأرخى – خيار أنجليزية	لبي الموحد للبكالوريا – فيمياء — هعبة العلوم ا	الامتحان الو- – ماحة: الغيزياء والك
		1.	Functional g	roups : - <i>COOH</i> ; - <i>OH</i> ; - <i>COO</i> -	3x0,25	 -Recognise in the formula of a chemical compound the organic functional groups: - OH (hydroxyl); -CO₂H (carboxyl) ; -CO₂R (ester); -CO-O-CO- (acid anhydride).
	H	2.	Slow and lim	ited (non-complete) transformation	0,25	-Know the characteristics of esterification and hydrolysis: non- complete and slow transformations.
	art	3.	Get through :	r = 66,7%	0,5	-Calculate the yield of a chemical transformation.
	3	4.	Expression o	f K; K = 4	2x0,25	-Write and exploit the expression of the equilibrium constant K corresponding to the equations of the esterification and hydrolysis reactions.
		5.	Structural for	rmula	0,5	 Write the equation of the reaction of an acid anhydride with an alcohol and that of the basic hydrolysis of an ester. Know the characteristics of the reaction of an acid anhydride with an alcohol: fast and complete.

Physics (13 points)

Exercise	Question	Answer elements	Scale	Reference of the question in the Reference Framework
	1	90 protons and 140 neutrons	2x0.25	-Know the meaning (significance) of the symbol $_{Z}^{A}X$ and
			240,20	give the corresponding composition of the nucleus.
	2.			-Write the equation of a nuclear reaction by applying the
		Equation of disintegration ; type α	0,5 + 0,25	two conservation laws.
Ex (3				- Recognise the type of radioactivity using the equation of
erc				a nuclear reaction.
cise 1 vints)	3.	В	0,75	- Define and calculate the mass defect and the binding
				energy.
	4.1.	$\lambda = 2, 8.10^{-6} \text{ year}^{-1}$	0,5	- Know and exploit the law of the radioactive decay, and
		Get through : $t_1 \simeq 1, 24.10^5$ year		exploit its curve
	4.2.		0,5	exploit its cuive.
L				

الصفحة 4

		يبية مسلك علوم الحياة والأرض—حيار أنطيزية	نيمياء — هعبة العلوم التجر معبة العلوم التجر	 ماحة: الغيزياء والك
Exercise	Question	Answer elements	Scale	Reference of the question in the Reference Framework
	1.1.	Establish the differential equation; $\tau = R_1 C$	0,5 0,25	- Find out the differential equation and verify its solution when the RC dipole is submitted to a step voltage.
	1.2.	$E = 12 V$; $\tau \simeq 38 ms$	0,25+0,5	 -Recognise and represent the variation curves of u_C(t) between the capacitor terminals and different physical quantities associated to it, and exploit them. -Exploit experimental documents in order to: recognise the observed voltages; highlight the influence of R and C on the charging and the discharging processes; *determine the time-constant and charge duration; *determine the state type (transient or steady) and the time interval for each one.
Exercise 2 (5 points)	1.3.	Verify the value of C	0,25	- Know and exploit the time-constant expression.
	2.1.	Justify the nature of oscillations	0,5	- Recognise the undamped (periodic), the underdamped (pseudo-periodic) and the overdamped (non-periodic) states.
	2.2.	Method ; $Q_0 = 7,56.10^{-5}$ C	2x0,25	 Know and exploit the relationship q = C.u. Recognise and represent the variation curves of the voltage between the capacitor terminals in terms of time for the three states mentioned above; and exploit them.
	2.3.	T = 3 ms	0,25	 Exploit experimental documents in order to: * recognise the observed voltages; * recognise the damping states; * highlight the influence of R, L and C on the oscillation phenomenon; * determine the values of the period and the natural period.
	2.4.	Get through : $L=3,57.10^{-2}$ H	0,5	- Know and exploit the natural period expression.
	2.5.1.	\mathscr{E}_{m} : Curve 1 ; justification	2x0,25	- Know and exploit the energetic diagrams.

4		وريا – الدورة الاستحراكية 2018 – تمناصر الإجابة جامه التحدينية مسالن تجامه المبالة مالأبض – جراب أنجابتية	لني الموحد للركال بيمياء — هوية ال	الامتحان الو		
		agytist fit (a) all atter par man agging the part	icingen Eigng			
	2.5.2	Method ; $\Delta \mathscr{C} = -2, 5.10^{-4} \text{ J}$	1	 Know and exploit the expression of the electric energy stored in a capacitor. Know and exploit the expression of the magnetic energy stored in an inductor. Know and exploit the expression of the total energy in the circuit. 		
Exercise	Question	Answer elements	Scale	Reference of the question in the Reference Framework		
	1.1.	Establish the differential equation	1	Apply Newton's second law to find out the differential equation of a system's centre of inertia motion in horizontal or inclined plane and determine the characteristics of kinetic and dynamic quantities of motion.		
	1.2.	straight line (rectilinear) uniformaly variable; justification	2x0,25	-Know and exploit the characteristics of the uniformly		
	1.3.	Method ; $t_{\rm B} \simeq 9,16 {\rm s}$	2x0,25	accelerated straight line motion and its parametric		
	1.4.	Method ; $v_{R} \simeq 13.1 \text{ m.s}^{-1}$	2x0,25	equations (t is the parameter).		
Exercise : (5points)	1.5.	Method ; $R \simeq 704, 6 N$	0,5+0,25	- Apply Newton's second law to find out the different equation of a system's centre of inertia motion horizontal or inclined plane and determine t characteristics of kinetic and dynamic quantities motion.		
- ω	2.1.	Method	0,5	- Exploit a document representing the path (trajectory) of		
	2.2.	Yes ; $x_{p} \simeq 9,85 \text{ m}$; $x_{p} > L$	0,25 0,25	 a projectile in a uniform gravitational field to: * determine the type of the motion (plane); * represent the velocity and the acceleration vectors; * determine the initial conditions and some parameters characterizing motion. 		
	2.3.	Method : $v_{Px} \approx 9,85 \text{ m.s}^{-1}$; $v_{Py} \approx -8,26 \text{ m.s}^{-1}$	0,5 0,25	- Know and exploit expressions of the instantaneous velocity vector and the acceleration vector.		