

الامتحان الوطني الموحد للبكالوريا المسالك الدولية - خيار أنجليزية الدورة الاستدراكية 2017 - عناصر الإجابة -

RR 34E

المركز الوطني للتقويم والامتحاذات والتوجيه

3	مدة الإنجاز	علوم الحياة والارض	المادة
5	المعامل	مسلك العلوم الفيزيائية _ خيار أنجليزية	الشعبة أو المسلك

Key and Marking Scale

	Questions	Scores			
I	Accept any appropriate answers.				
	Ophiolite: is part of ancient Oceanic crust present nowadays at the continental				
	margin. (Accept the definition of complex ophiolite)	0.5 pt			
		_			
	Foliated texture: is a structure of the metamorphic rocks characterised by the				
	alternation of clear and dark bands (the mineral constituents of foliated				
	metamorphic rocks are in parallel arrangement)	0.5 pt			
II	The three structural and petrographic characteristics of obduction				
	mountain chains are: (3×0.25pt)				
	- presence of the ophiolite.				
	- presence of the rock deformation complex(thrust fault/thrust sheets/nappes)				
	- presence of the oceanic/marine sediments.	0.75 pt			
III	(1,c); $(2,b)$; $(3,b)$; $(4,d)$	2 pts			
IV	The appropriate name for each figure:				
	Figure 1 : Overturned fold; Figure 2 : Recumbent fold ; Figure 3 : Thrust fault;				
	Figure 4: Normal fault; Figure 5: Reverse fault.	1.25 pt			
Section	n II : Scientific reasoning and communication in graphic and written modes (15	pts)			
Questions	Exercise 1 (5 pts)	Scores			
1.a	- free style swimming 100 metres (1mn): important decrease in the phosphocreatine				
	concentration, increase in lactic acid concentration and a low decrease of glycogene				
	concentration	0. 5 pt			
	-free style swimming 1500 metres (15min): important decrease in glycogene				
	concentration, a slight increase in lactic acid concentration and low decrease in the				
	phosphocreatine concentration.	0. 5 pt			
1.b	metabolic pathway in the muscle:				
	- For the 100 meters swimmer free style : there is a dominance of				
	phosphocreatine consumption (85%), and use of the lactic fermentation(10%)				
	and glucose consumption (5%) to produce ATP	0. 5 pt			
	For the 1500 meters swimmer free style: we observe a dominance of the aerobic				
	pathway (95%), and the muscle uses the anaerobic pathway (lactic fermentation)				
	(5%) to produce ATP.	0. 5 pt			
2	-document 3: flowing a training of long duration, we observe an increase in the				
	number and size of mitochondria and an increase in Krebs cycle enzyme]			
	activity	0.25 pt			

الصفحة 2

RR34E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة: علوم الحياة والأرض - مسلك العلوم الفيزيائية - خيار أنجليزية

	-document 4 : an increase in the swimming speed is accompanied by an	
	enormous increase in lactic acid concentration. We notice that this lactic acid	
		0.25
	concentration is less in the trained swimmer's muscles.	0.25 pt
	Explanation:	
	During muscular effort of long duration (swimming for 1500 meters), the muscle	
	favors the aerobic metabolism (respiration) compared to anaerobic metabolism	
	(lactic fermentation) due to an increase in the number and size of mitochondria	
	and an increase in Krebs cycle enzyme activity.	0.5 pt
3	- The EPO consumption increases the number of red blood cells and hemoglobin	ole pe
	quantity →increase in the muscle oxygenation → increase in ATP production	
	through aerobic pathway (respiration).	0.75 pt
	- The consumption of the creatine gives the muscle an additional ATP quantity.	0.25 pt
4	Regular training allows an increase in the number and size of mitochondria and	0.20 pt
•	an increase in Krebs cycle enzyme activity. Training in a mountainous region	
	increases the number red blood cells and the hemoglobin quantity (same effect of	
	EPO); it also improves the pulmonary ventilation, which increases the ATP	
	production in the muscle through aerobic pathway (respiration). This proves that	
	the sporting performance without using EPO is possible.	1 pt
questions	Exercise 2 (3 pts)	scores
1	- Transfer of a seedling fava bean from a normal culture medium to a radioactive	BCOTCB
-	culture medium (rich in radioactive thymidine)—insertion of radioactive	
	thymidine in DNA during its replication \rightarrow obtaining a DNA molecule having a	
	radioactive strand→ the two chromatids of metaphase chromosomes become	
	radioactive	0.25 pt
	Transfer of this seedling in a non-radioactive culture medium during a cellular cycle→ insertion of non-radioactive thymidine in DNA during its replication	0.25 pt
	→ obtaining two types of DNA molecules: one type has one radioactive strand and the other has two non-radioactive strands → one of the two chromatids of each metaphase chromosome is radioactive	0.5.4
	Drawing an appropriate scheme of DNA replication:	0.5 pt
2		0.5 pt
4	Amino acid sequence corresponding to a part of the gene that codes the ERCC3 protein synthesis:	
	mRNA: CCA ACU UGU GAU AAC UGC	0.25 pt
		r.== P·
	Amino acid sequence: Pro – Thr – Cys – Asp – Asn – Cys	0.25 pt
	Amino acid sequence corresponding to a part of the gene that codes the ERCC3 protein synthesis in the individual affected with XPB.	
	mRNA: CCA AUU GUG AUA ACU GCA	0.25 pt
	Amino acid sequence: Pro – Ile – Val – Ile – Thr – Ala	0.25 pt
	Explanation:	
	Mutation at the level of 67 triplet by deletion of G nucleotide in the transcribed strand of DNA (Deletion of C nucleotide in the untranscribed DNA strand) → synthesis of the inefficient ERCC3 protein → ERCC3 not capable of repairing errors at the DNA level → the appearance of the disease.	0.5 pt

RR34E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة: علوم الحياة والأرض - مسلك العلوم الفيزيائية - خيار أنجليزية

questions		1	Exercise 3 (2 p	ts)		scores
1	- dihybrid cross : study of the transmission of two hereditary traits				mosome), and the	0.25 pt
	gene controlling the colour of eyes is not linked to sex				0.25 pt	
	+ the two genes are independent				0.25 pt	
	+the allele responsible for the blue plumage is dominant (B) and the allele responsible for the brown plumage is recessive (b), and the allele responsible for the black eyes is dominant (N) and the allele responsible for the orange eyes is					
2	recessive (n).	of the first area				0.25 pt
<u> </u>	Interpretation	of the first cross	S:			
	Parents : Phenotyp Genotype	: N//r 25% N/X	male [NB] $x_{B} = x_{A} + x_{B} + x_{A} + x_$		ale [nb] n//n; X _b Y n/Y; 50% n/X _b	
	$25\% \ n/X_B \ ; \ 25\% \ n/X_b$					0.5 pt
	$\gamma \stackrel{\gamma \circ}{=}$	N/ X _B 25%	N/ X _b 25%	n/ X _B 25%	n/ X _b 25%	
	n/ X _b 50%	$N//n X_B X_b$ [NB]	$N//n X_b X_b$ [Nb]	$n//n X_B X_b$ [nB]	$\begin{array}{c c} n//n & X_b X_b \\ [nb] \end{array}$	
	n/ Y 50%	$N//n X_BY$ [NB]	N//n X _b Y [Nb]	$n//n X_B Y$ $[nB]$	$n//n X_b Y$ [nb]	
		25% [NB]	25% [Nb]	25% [nB]	25% [nb]	
	We get four phenotypes having the same proportion - 1/4 for each.					0.5 pt
questions	Exercise 4 (5 pts)				scores	
 -figure a: 68% of world electricity production relies on fossil resources (charcos gas and oil) - figure b: fossil-based electricity production emits more CO₂ Electricity production relying on fossil resources emits a great quantity of CO₂ 				quantity of CO ₂ in	0.5 pt 0.5 pt	
1.a	the atmosphere; CO_2 is a greenhouse gas making the greenhouse phenomenon worse and worse.				0.5 pt	
1.b	Two procedures among the following: - use of renewable energies; - use of nuclear energy;				0.5 pt	
	-decreasing the use of fossil energy.					
Effective procedures adopted by Morocco to maintain its commitment towal COP21 is reflected in: - reducing the electricity production based on fossil resources (figure a) - using more renewable energies by building solar stations and wind fair (figure b).			figure a)	1 pt		
	1	Iorocco to reduc	e CO ₂ emission	ns.		

الصفحة	I
<u>4</u>	ı
4	

RR34E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2017 - عناصر الإجابة - مادة: علوم الحياة والأرض - مسلك العلوم الفيزيائية - خيار أنجليزية

3	Using nuclear energy is risky: radioactivity emissions (iodine and caesium) have a negative impact on human beings' health and on the environment (nuclear pollution) – increasing cancer cases and more deaths.	1 pt
4	Accept any appropriate opinion. The electricity production by nuclear stations is very important, but the dangers that may happen following accidents in central stations are enormous and have harmful consequences on the environment and the human health. That's why Morocco has adopted a strategy based on renewable energy. These energies even if they do not produce large amounts of energy compared to nuclear energy, they are clean and safe.	1 pt