

الامتحان الوطني الموحد للبكالوريا المسالك المسنية

الدورة العادية 2018 -الموضوع-

NS216A

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الاختبار التوليفي في المواد المهنية - الجزء الأول (الفترة الصباحية)	المادة
10	المعامل	شعبة الهندسة الكهربانية: مسلك النظم الإلكترونية والرقمية	ر الشعبة أو المسلك (

☞ Le sujet comporte au total 15 pages.

* Le sujet comporte 3 types de documents :

■ Pages 02 à 08 : Socle du sujet (Couleur Verte).

■ Pages 09 à 11 : Documents ressources portant la mention DRES XX (Couleur Rose).

■ Pages 12 à 15 : Documents réponses portant la mention DREP XX (Couleur Blanche).

Le sujet comporte 2 parties :

A/ Etude d'un système d'une couveuse des œufs de poules automatique..... (65 points)

B/Notions sur la micro-électronique et la nanotechnologie...... (5 points)

Les deux parties sont indépendantes et peuvent être traitées dans un ordre quelconque. La numérotation des questions est continue : de la question 1 (Q1) à la question 29 (Q29).

- Toutes les réponses doivent être rédigées sur les documents réponses : DREP XX.
- Les pages portant en haut la mention DREP XX (Couleur Blanche) doivent être obligatoirement jointes à la copie du candidat même si elles ne comportent aucune réponse.
- Aucun document n'est autorisé.
- Font autorisées les calculatrices non programmables.

الامتدان الوطني الموحد البكالوريا (المسالك الممنية) – الدورة العادية 2018 – الموضوع – ماحة: الاحتبار التوليغي في المواد الممنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

A/ Etude d'un système d'une couveuse des œufs de poules automatique (65 points)

I) INTRODUCTION

La poule pond environ 1 œuf par jour et patiente 10 jours avant de couver, la période de la couvaison dure 21 jours avant l'arrivée des poussins. Mais l'œuf ne peut être fécondé qu'en présence d'un coq.

La couvaison naturelle permet une production faible de poussins par contre l'utilisation de la couveuse artificielle permet une production à grande échelle.

La couveuse (ou incubateur) est une machine qui prend le rôle de la poule pour faire naître des poussins. Cette machine assure la période de couvaison naturellement maitrisée par la poule et amène à l'éclosion des œufs.

Il existe trois types de couveuses :

- Couveuse manuelle;
- Couveuse semi-automatique;
- Couveuse automatique.

II) DESCRIPTION DU SYSTEME

La couveuse automatique convient aux éleveurs confirmés possédant de nombreuses poules. Elle comporte principalement les éléments suivants :

- Un plateau associé à un moteur électrique qui permet le retournement des œufs;
- Un thermostat pour régler la température de l'enceinte ;
- Un capteur d'humidité qui mesure l'humidité relative ;
- Une grille pour placer les œufs ;
- Un ventilateur pour mieux répartir la chaleur ;
- Un ventilateur pour agir sur le taux d'humidité;
- Un interrupteur d'éclairage indépendant.

الصفحة 3 15

NS216A

الامتدان الوطني الموحد للبكالوريا (المسالك المسنية) – الدورة العادية 2018 – الموضوع – مادة: الاختبار التوليغي في المواد المصنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

Le choix de la couveuse repose sur différents critères :

- Le taux d'humidité : il peut être modulé selon la race de la poule (poids de l'œuf).
- La **température de couvaison** : la qualité du thermomètre et du thermostat doivent être irréprochables pour mener à bien une couvaison.
- La **ventilation** : le renouvellement de l'air doit être suffisant.
- Le **retournement de l'œuf** : opération essentielle pour la survie de l'embryon.
- L'hygiène de la couveuse : désinfecter la couveuse après chaque couvaison.

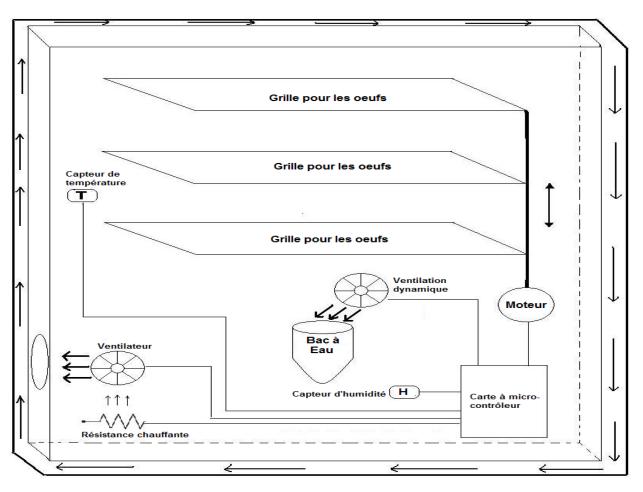
III) Fonctionnement

L'incubateur automatique est équipé d'un système automatique pour incliner les œufs placés dans des grilles. Ce retournement des œufs s'effectue tous les **12 heures** par la commande d'un moteur qui accomplit un retournement en douceur durant **1 heure**.

La chaleur nécessaire à l'incubation est générée par une résistance électrique chauffante commandée par une carte à microcontrôleur qui permet de maintenir la température à une valeur constante et précise.

La ventilation est assurée au moyen d'un ventilateur qui distribue l'air chaud de manière uniforme.

Le taux d'humidité à l'intérieur de la couveuse est contrôlé par la carte à microcontrôleur qui agit sur la quantité d'air qui circule dans la couveuse et sur la quantité d'eau contenue dans le bac à eau.


Pour faire diminuer le taux d'humidité, on fait rentrer davantage d'air à l'intérieur de la couveuse par une ventilation dynamique.

Lorsque l'éclosion approche, on remplit le bac à eau et on réduit le flux d'air entrant.

Les normes de température et d'humidité d'incubation recommandées pour les poules sont :

- Température = 38 °C;
- Taux d'humidité = 60 %.

Schéma synoptique de la couveuse automatique

الامتدان الوطني الموحد للبكالوريا (المسالك المعنية) – الدورة العادية 2018 – الموضوع – ماحة: الاختبار التوليغي في المواد المعنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

L'étude du système portera sur :

- La chaîne de mesure de la température **T** ;
- La chaîne de traitement de la température T :
 - Etude de la temporisation pour le retournement des œufs ;
 - Etude de la conversion Analogique/Numérique et l'affichage de la température.

CHAINE DE MESURE DE LA TEMPERATURE T 25 points

1/ Capteur de température. (Voir document ressource DRES 01)

La mesure de la température est réalisée à l'aide d'une sonde de type « Pt100 3 fils ». Cette sonde a une résistance de $100~\Omega$ à 0 °C et 138,5 Ω à 100 °C. Sa réponse est considérée comme linéaire entre 0 °C et 100 °C.

Q1: Donner la signification du terme Pt100.

Q2: Quelle est la grandeur physique d'entrée de ce capteur ?

Q3: Quelle est sa grandeur physique de sortie?

Q4: Ce capteur est-il actif ou passif? Justicier votre réponse.

Q5: Déterminer la sensibilité **S** de la sonde dans l'intervalle [0°C , 100 °C].

Q6: Etablir la relation entre la résistance R du Pt100 et la température T.

Q7: Le fonctionnement normal de la couveuse nécessite une température de **38°C**. Donner pour cette température la valeur de la résistance **R** de la sonde Pt100.

Q8: Expliquer l'intérêt d'un montage Pt100 à 3 fils par rapport à un montage Pt100 à 2 fils.

2 pts

1 pt

1 pt 2 pts

1 pt

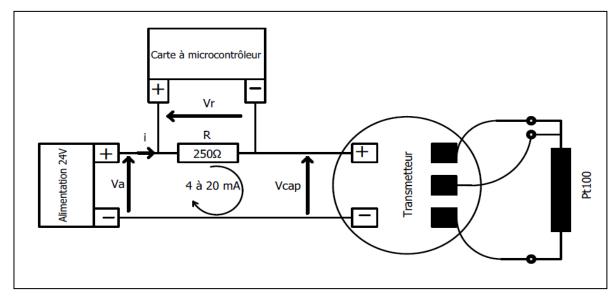
2/ Unité de mesure de la température.

L'affichage de la température est programmé de façon à avoir un affichage en unité degré Celsius (°C) ou degré fahrenheit (°F).

Dans l'échelle de Fahrenheit, la température de 0°C est 32°F, celle de 100°C est 212°F.

Q9: Montrer que l'équation de correspondance entre l'échelle Fahrenheit et l'échelle Celsius s'exprime par :

$$T(°F) = \frac{9}{5}T(°C) + 32$$


Q10: Quelle est la température T repérée par la même valeur dans les échelles de Fahrenheit et de Celsius (T=T(°C)=T(°F)) ?

1 pt

2 pts

3/Transmetteur 4-20 mA.

Le schéma de câblage de la partie mesure de la boucle de température est donné par la figure ci-dessous. La sonde Pt100 est reliée à un **conditionneur- transmetteur 2 fils,** qui délivre en sortie un courant d'intensité variant de **4 mA** à **20 mA**. Il a été étalonné pour une plage de mesure de **0°C** à **100 °C**. On a branché une résistance de **R = 250 \Omega** dans la boucle **4-20 mA** pour mesurer la température par la carte à microcontrôleur.

عة	الصف
$\overline{}$	_5
15	

الامتحان الوطني الموحد للبكالوريا (المسالك الممنية) – الحورة العادية 2018 – الموضوع – ماحة: الاحتبار التوليغي في المواد الممنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

1 pt 1 pt

1 pt

2 pts

1 pt

1 pt

2 pts

1 pt

1 pt

2 pts

Le fonctionnement normal de la couveuse nécessite une température de 38°C.

()11:	• (Quelle	est alors	la valeu	ır du	courant i	du tra	nsmetteur?
•	,,,,	,	Quenc	CSL GIOLS	ia vaicu	ıı uu	courant i	uu tia	Hometten :

Q12: En déduire la valeur de la tension Vr à l'entrée de la carte d'acquisition.

Q13: Donner l'expression de la tension **Vcap** au bornes du transmetteur en fonction de **Va**, **R** et i.

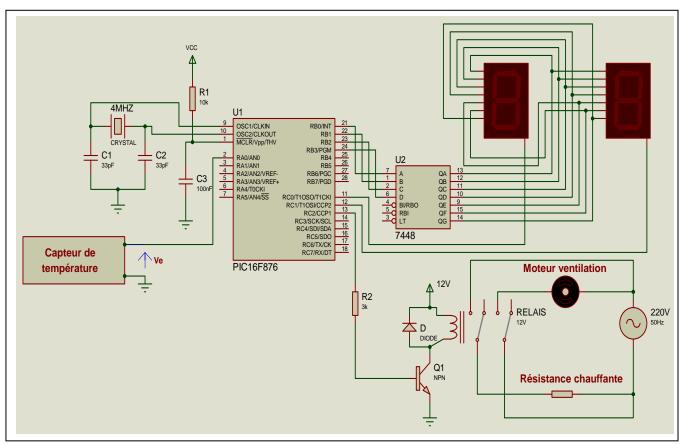
Q14: Déterminer les valeurs **Vcap**_{min} et **Vcap**_{max} de la tension **Vcap** lorsque le courant de la boucle varie de **4** à **20 mA**.

Q15: Cette plage de tension convient-elle au transmetteur de la température si son constructeur indique que le bon fonctionnement de ce transmetteur est garanti lorsqu'il est alimenté par une tension entre **15** et **30 volts** ? Justifier votre réponse.

Q16: On voudrait utiliser un enregistreur de température dont le signal d'entrée varie de 1 à 5 Volts.

a) Donner la valeur de la résistance Re à insérer en parallèle avec l'enregistreur.

b) Compléter le schéma de câblage de la boucle du courant 4-20 mA.

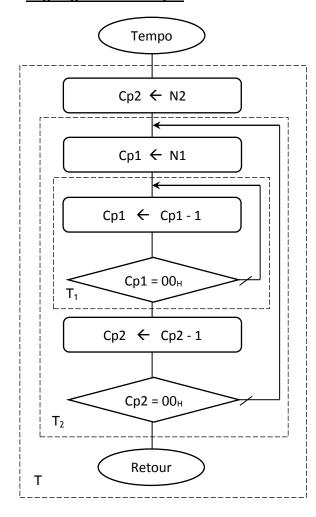

Q17: Déterminer alors les nouvelles valeurs Vcap_{min} et Vcap_{max} de la tension Vcap lorsque le courant de la boucle varie de 4 à 20 mA.

Q18: Le transmetteur fonctionne-t-il correctement ? Pourquoi ? On rappelle que le transmetteur est garanti lorsqu'il est alimenté par une tension entre **15** et **30 volts**.

Q19: Dans le cas où le transmetteur ne fonctionne pas correctement, comment faut-il raccorder l'enregistreur et la carte à microcontrôleur ?

CHAINE DE TRAITEMENT DE LA TEMPERATURE T 40 points

Schéma du montage


الامتمان الوطني الموحد للبكالوريا (المسالك الممنية) – الدورة العادية 2018 – الموضوع – ماحة: الاحتبار التوليغي في المواد الممنية (الجزء الأول) – مسلك النظم الإلكترونية والرقمية

1/ Etude de la temporisation

Comme dans la plupart des systèmes électroniques embarqués il est souvent nécessaire de prévoir une temporisation dont le délai est ajusté selon le besoin.

Soit l'exemple suivant d'un sous-programme de temporisation en langage assembleur :

Organigramme 'Tempo':

On donne:

- Un cycle machine = 1 μs;
- T1 est le temps mis par le microcontrôleur pour exécuter la boucle 1;
- **T2** est le temps mis par le microcontrôleur pour exécuter la boucle 2 ;
- **T** est le temps mis par le microcontrôleur pour exécuter le sous-programme tempo ;
- N1 : donnée sur 8 bits chargée dans le compteur Cp1;
- N2: donnée sur 8 bits chargée dans le compteur Cp2.

Sous-programme 'Tempo':

Tempo	MOVLW	N2
	MOVWF	Cp2
Boucle2	MOVLW	N1
	MOVWF	Cp1
Boucle1	DECFSZ Cp1, F	
	GOTO	Boucle1
	DECFSZ Cp2, F	
	GOTO	Boucle2
	RETURN	

Q20: Pour calculer le temps **T** en **ms** de la temporisation réalisée, on s'aide du nombre de cycles machines des instructions (voir document ressource **DRES 03**):

a) Donner l'expression de **T1** en fonction de **N1**;

b) Donner l'expression de T2 en fonction de N1 et de N2;

c) Donner l'expression de la temporisation T en fonction de N1 et de N2 ;

d) Calculer la temporisation T pour N1 = 255 et N2 = 255.

2 pts

2 pts

2 pts 2 pts

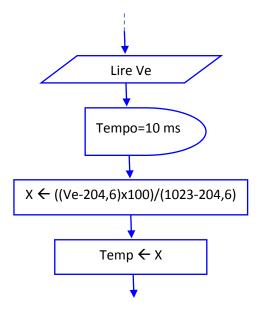
عة	الصف
15	7

الامتحان الوطني الموحد للبكالوريا (المسالك الممنية) – الحورة العادية 2018 – الموضوع – ماحة: الاختبار التوليغي في المواد الممنية (الجزء الأول) – مسلك النظم الإلكترونية والرقمية

2 / Traitement de température et affichage

021: Compléter le tableau de déclaration des variables.

4 pts


Q22: Afin de configurer uniquement l'entrée **RA0** comme **entrée analogique** et en s'aidant du document ressource **DRES 02**, compléter le tableau et déterminer la valeur en hexadécimal à donner au registre **ADCON1**.

4 pts

Q23: On configure les registres **TRISA**, **TRISB**, et **TRISC** selon le montage (voir **page 05**). Compléter le tableau et déterminer les valeurs en hexadécimal à donner respectivement aux registres **TRISA**, **TRISB** et **TRISC**. Les bits non utilisés sont **mis à 0**.

6 pts

On considère l'organigramme suivant qui sert à lire l'entrée analogique **AN0** et la convertir en une valeur numérique image de la température.

Q24: Ecrire la partie du programme en langage C correspondante à l'organigramme. On affectera la valeur de la température à la variable **Temp** de type entier.

8 pts

Le compilateur de **MikroC** indique que le programme qui traite la partie d'affichage de la température contient **4 erreurs**.

Q25: Compléter le tableau relatif à ces erreurs.

4 pts

La commande de la résistance chauffante et du moteur de ventilation (voir montage **page 05**) s'effectue comme suit :

- Si la température est inférieure ou égale à 37 °C, on active la résistance chauffante et le moteur de ventilation;
- L'activation doit rester jusqu'à ce que la température soit supérieure ou égale à **39 °C** (condition nécessaire pour désactiver la résistance chauffante et le moteur de ventilation).
- **Q26:** Ecrire la partie du programme en **MikroC** pour contrôler la résistance chauffante et le moteur de ventilation.

6 pts

الامتمان الوطني الموحد للبكالوريا (المسالك الممنية) – الدورة العادية 2018 – الموضوع – مادة: الاختبار التوليغي في المواد الممنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

B/Notions sur la micro-électronique et la nanotechnologie (5 points) REVOLUTION TECHNOLOGIQUE

Commercialement, le silicium est le semi-conducteur le plus utilisé du fait de son développement technologique et de ses propriétés électriques et physiques. Le silicium atteint ses limites physiques exploitables dans l'électronique de puissance nécessitant des forts courants et des hautes tensions. L'évolution des besoins en électronique de puissance de plus en plus exigeants demande l'apparition de nouveaux matériaux. Une alternative au Si peut être les semi-conducteurs à grand gap⁽¹⁾. Le diamant et le nitrure de gallium sont parmi les semi-conducteurs à grand gap les plus attractifs, mais ils connaissent des limites en termes de disponibilité de substrats et de maturité de la technologie qui font qu'aujourd'hui ces semi-conducteurs sont peu avancés. Le carbure de silicium (SiC) a été découvert « accidentellement » par Berzelius en 1824. Il est arrivé ces dernières années à une maturité technologique qui permet de réaliser une gamme assez large de composants de puissance (GTO, transistors bipolaires, MOSFET, IGBT...). Grâce à leur large bande d'énergie interdite, une bonne conductivité thermique et une grande stabilité chimique et physique, ainsi qu'un champ de claquage 10 fois supérieur au celui du Si, les composants à base de SiC peuvent fonctionner à haute température en diminuant la taille du circuit de refroidissement, et sous tension élevée, dans des environnements hostiles⁽²⁾.

- (1) gap : largeur de la bande d'énergie interdite pour les électrons.
- (2) hostiles : milieux ou les composants électroniques sont soumis à des agressions physiques (pression, température, rayonnement, ...etc.) ou chimiques.

Extrait d'une thèse de recherche : conception, suivi de fabrication et caractérisation électriques des composants haute tension en Carbure de silicium (SiC) , INSA de Lyon, 2012.

A partir de l'extrait :

Q27: Préciser la date et nom du savant chimiste Suédois qui a découvert le Carbure de Silicium (SiC).

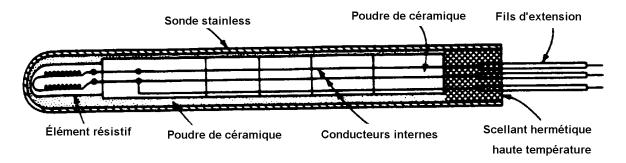
1 pt

Q28: Relever les avantages des composants électroniques à base du carbure de silicium par rapport à ceux du silicium pendant leurs fonctionnements.

2 pts

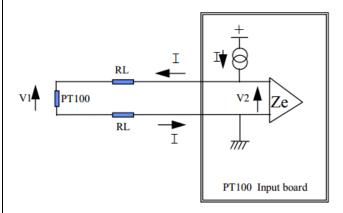
Q29: Pourquoi on n'utilise pas les circuits à base du diamant et du nitrure de galium comme une solution alternative aux circuits à base du silicium ?

2 pts

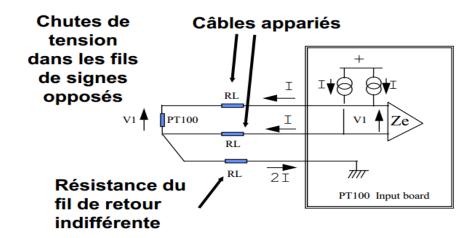


الامتدان الوطني الموحد للبكالوريا (المسالك المسنية) – الدورة العادية 2018 – الموضوع – مادة: الاجتبار التوليغي في المواد المصنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

DRES 01


Sonde PT100:

La sonde PT100 utilise comme principe physique la variation de la résistance du platine pur en fonction de la température, sa plage d'utilisation est de $-180\,^{\circ}$ C à 650 $^{\circ}$ C et elle a une résistance de 100Ω pour une température de $0\,^{\circ}$ C. Le matériau de la sonde est en acier inoxydable («stainless steel»).


Pour une grande longueur, les résistances des fils de connections de la sonde au système de mesure ne sont plus négligeables. Il faut donc tenir compte de cette erreur en employant des dispositifs de câblages particuliers

Circuit de mesure : montage 2 fils

V2 > V1(PT100) chutes de tension dans les résistances de ligne (RL)

Circuit de mesure : montage 3 fils

الامتحان الوطني الموحد للبكالوريا (المسالك المهنية) – الدورة العادية 2018 – الموضوع – ماحة: الاختبار التوليغي في المواد المهنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

DRES 02

PIC16F87XA

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	ADCS2	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7	•	•					bit 0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.

o = Left justified. Six (6) Least Significant bits of ADRESL are read as 'o'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in shaded area and in bold)

ADCON1 <adc\$2></adc\$2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	_	_	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	۵	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	۵	D	Α	Α	VREF+	Α	Α	Α	AN3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels/# of A/D voltage references

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
- n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

Note: On any device Reset, the port pins that are multiplexed with analog functions (ANx) are forced to be an analog input.

الامتدان الوطني الموحد للبالوريا (المسالك المصنية) – الدورة العادية 2018 – الموضوع – ماحة: الاختبار التوليغي في المواد المصنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

DRES 03

Jeu d'instructions

Mnemonic, operonds		Description	Cycles	14-bit opcode			Status	
		•	_	MSB			LSB	affected
BYTE ORIENTED FILE REGISTER OPERATIONS								
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z
CLRF	f	Clear f	1	00	0001	1fff	ffff	Z
CLRW	-	Clear W	1	00	0001	0xxx	XXXX	Z
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z
DECFSZ	f, d	Decrement f, skip if 0	1(2)	00	1011	dfff	ffff	
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z
INCFSZ	f, d	Increment f, skip if 0	1(2)	00	1111	dfff	ffff	
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z
MOVWF	f	Move W to f	1	00	0000	1fff	ffff	
NOP	-	No operation	1	00	0000	0xx0	0000	
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	C
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	C
SUBWF	f, d	Subsract W from f	1	00	0010	dfff	ffff	C, DC ,7
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff	
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z
		BIT ORIENTED FILE REGIS	TER OPER	RATIO	NS			
BCF	f, b	Bit clear f	1	01	00bb	bfff	ffff	
BSF	f, b	Bit set f	1	01	01bb	bfff	ffff	
BTFSC	f, b	Bit test f, skip if clear	1(2)	01	10bb	bfff	ffff	
BTFSS	f, b	Bit test f, skip if set	1(2)	01	11bb	bfff	ffff	
		LITERAL AND CONTRO	L OPERAT	IONS				
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C, DC, 7
ANDLW	k	AND literal With W	1	11	1001	kkkk	kkkk	Z
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk	
CLRWDT	-	Clear watchdog Timer	1	00	0000	0101	0100	TO, PD
GOT0	k	Go to address	2	10	1kkk	kkkk	kkkk	
IORLW	RLW k Inclusive OR literal With W		1	11	1000	kkkk	kkkk	Z
MOVLW	OVLW k Move literal to W		1	11	00xx	kkkk	kkkk	
RETFIE	RETFIE - Return from interrupt		2	00	0000	0000	1001	
RETLW k Return with literal to W		2	11	01xx	kkkk	kkkk		
RETURN	-	Return from subroutine	2	00	0000	0000	1000	
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO, PD
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C, DC, 7
XORLW	k	Exclusive OR literal With W	1	11	1010	kkkk	kkkk	Z

نحة	الصة
$\overline{}$	12

الامتحان الوطني الموحد للبكالوريا (المسالك المهنية) – الدورة العادية 2018 – الموضوع – مادة: الاحتبار التوليغي في المواد المهنية (الجزء الأول) — مسلك النظو الإلكترونية والرقمية

DREP 01

Q1: 	
Q2: 	
Q3: 	
Q4: 	
Q5: 	
Q6: 	
<i>Q7:</i> 	
Q8: 	
Q9: 	
<i>Q10:</i> 	
Q11: 	
Q12: 	
Q13: 	

عة	الصف
$\overline{}$. 13
4 F	

الامتدان الوطني الموحد للبالوريا (المسالك المصنية) – الدورة العادية 2018 – الموضوع – ماحة: الاختبار التوليغي في المواد المصنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

DREP 02

<i>Q14:</i> 						
Q15:						
Q16:	a)					
	Alimentation 24V	Enregistreur	Carte à microcontrôleur	(-	Iransmetteur	Pt100
Q17:						
Q18:						
Q19:						
Q20:	a)					

							وليغيى في الموا		
	L	`			DREI	03			
	b) 							
	С)							
	d								
	u	, 							
:									
N	om d	e la variab	le Type	de la variabl	е	Déclara	ation de la va	riable en C	
		Ve		Entier					
		Χ		Réel					
Temp			Entier						
	Dizaine_temp			Entier					
	Uni	te_temp		Entier	tier				
?:		5:: 7	D:: 6	577.5		D'' 2	B:: 2	50.4	5:: 0
Regis		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADCC	JINI	0	0						
Α	DCO	N1=							
: :									
gistre		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RISA									
		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
gistre RISB		2,	510 0	510 5	510 7	2103	510 2	510 1	5.0
gistre	<u>,</u>	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
RISC									

حة	الصف
$\overline{}$	15
15	\

الامتدان الوطني الموحد للبكالوريا (المسالك المصنية) – الحورة العاحية 2018 – الموضوع – ماحة: الاحتبار التوليغي في المواد المصنية (الجزء الأول) – مسلك النظو الإلكترونية والرقمية

D	R	F	P	O	4

			_
:			
:			
N° Ligne	//Gestion d'affichage	Cocher la ligne erronée	Réécrire correctement la ligne erronée
1	Dizaine_temp = (Temp/10)%10;		
2	PORTC.F0 = 0 PORTC.F1 = 1;		
3	PORTB = Dizaine_temp ;		
4	delay_s(10); // attente de 10 ms		
5	Unite_temp = Temp%10;		
6	PORTCF0 = 1; PORTC.F1 = 0;		
7	TRISB = Unite_temp;		
:			
	•••••	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •			
:			
:			
:			
:			
:			

الامتحان الوطني الموحد للبكالوريا ___

الدورة الاستدراكية 2018 -عناصر الإجابة-

RR216A

المركز الوطني للتقويم والامتحانات والتوجيه

4	مدة الإنجاز	الاختبار التوليفي في المواد المهنية - الجزء الأول (الفترة الصباحية)	المادة
10	المعامل	شعبة الهندسة الكهربائية: مسلك النظم الإلكترونية والرقمية	الشعبة أو المسلك

Eléments de corrigé

<i>Q1</i> :	Rôle du codeur sur la machine : Mesurer la longueur du câble à couper.	2 pts
<i>Q2:</i> gén	Pour mesurer la longueur du câble par le codeur, on compte le nombre des impulsions érées par le signal A ou B.	2 pts
<i>Q3:</i>	Calcul de la longueur : $L = 2\pi R \approx 333 \text{ mm}.$	2 pts
Q4:	Nombre N d'impulsions (ou de périodes) par tour : N = $(2\pi R)$ /précision ≈ 333 impulsions.	2 pts
Q5:	Nom de la caractéristique du codeur représenté par le nombre N : la résolution.	1 pt
<i>Q6:</i>	Précision réelle pr de la coupe : pr = L/360 ≈ 0,925 mm.	2 pts
<i>Q7:</i>	Vitesse de rotation du codeur : n = V/L ≈1,5 tour/s.	2 pts
Q8:	Fréquence f du signal A du codeur : f=360x1,5=540 Hz.	2 pts
<i>Q9</i> :	Nombre d'impulsions Nt fournies par le codeur : Nt =360x900/333 ≈ 973 impulsions.	3 pts
Q10:	Valeur de la fréquence f' en Hz du signal A du codeur : f' = 1000/2,16 ≈ 463 Hz.	2 pts
<i>Q11:</i> du d	Valeurs de la vitesse de rotation n' du codeur en tour/s, et de la vitesse de défilement câble V' en m/s : $n' = 463/360 \approx 1,286 \text{ tour/s}$ $V' = (2\pi R) x 1,286 \approx 0,428 \text{ m/s}$.	3 pts

حة	الصف
$\overline{}$	2
4	

RR216A

الامتدان الوطني الموحد للبكالوريا (المسالك الممنية) – الدورة الاستدراكية 2018 – عناصر الإجابة – ماحة، الاختبار التوليغي في المواح الممنية (الجزء الأول) — مسلك النظو الإلكترونية والرقمية

Eléments de corrigé

Q12: Tableau de déclaration des variables :

Nom de la variable	Type de la variable	Déclaration de la variable en C	
compt	caractère	char compt ;	2 pts
Unite_longueur	Entier	int Unite_longueur;	1 pt
Dizaine_longueur	Entier	int Dizaine_longueur;	1 pt

Q13: Lignes de configuration en MikroC :

1 pt pour chaque ligne

Programme en Langage C	Description
ADCON1=0x06 ; ou ADCON1=0x07 ;	Configuration du registre ADCON1 pour rendre les bits du port A numériques
INTCON.GIE = 1;	Activation des interruptions globales dans le registre INTCON
INTCON.INTE = 1;	Activation de l'interruption sur RB0 dans le registre INTCON
OPTION_REG.F6 = 1;	Choix du front montant en utilisant le bit 6 du registre OPTION_REG
TRISB.F0 = 1;	Configuration de RBO comme entrée
TRISB.F1 = 0;	Configuration de RB1 comme sortie
TRISA = 0x00;	Configuration des bits du Port A comme sortie
TRISC = 0x00;	Configuration des bits du Port C comme sortie

Q14: Partie du programme en langage assembleur :

8 pts

CLRF Unite_longueur 1 pt
CLRF Dizaine_longueur 1 pt
CLRF compt 1 pt
BCF STATUT, RPO 1 pt
BCF STATUT, RP1 1 pts
BCF PORTB, 1 1 pt
CLRF PORTA 1 pt
CLRF PORTC 1 pt

RR216A

الامتدان الوطني الموحد للبكالوريا (المسالك الممنية) – الحورة الاستحراكية 2018 – عناصر الإجابة – ماحة: الاختبار التوليفي في المواح الممنية (الجزء الأول) – مسلك النظم الإلكترونية والرقمية

Eléments de corrigé

Q15: Partie du programme à compléter : 8 x 1 pt = 8 pts

```
//-----Fonction interruption------
void interrupt() {
              if (INTCON.INTF) // on teste si le drapeau de l'interruption sur RBO est activé
                     { compt++; //on incrémente la variable compt
                      if(compt == 10)
                                          // on teste si la variable compt égale à valeur 10
                         { Unite_longueur++ ; //si oui, on incrémente la variable Unite_longueur
                                                // et on initialise la variable compt à 0
                          compt = 0;
                          }
                     if(Unite_longueur >9) // si la variable Unite_longueur est supérieure strictement à 9
                            { Unite_longueur = 0; // on initialise la variable Unite_longueur à 0
                              Dizaine_longueur++; // on incrémente la variable Dizaine_longueur
                            }
                     INTCON.INTF = 0; // on désactive le drapeau de l'interruption
                     }
              }
```

```
Q16: Instruction (ou les instructions) en langage C :
    while(1){ } ou do{ } while(1) ou for(;;){ }
```

2 pts

حة	الصف
$\overline{}$	4
4	

RR216A

الامتدان الوطني الموحد للبكالوريا (المسالك الممنية) – الحورة الاستحراكية 2018 – عناصر الإجابة – ماحة: الاحتبار التوليفي في المواح الممنية (الجزء الأول) — مسلك النظو الإلكترونية والرقمية

Eléments de corrigé

Q17: Partie du programme à compléter :

2 pts pour chaque ligne

```
------Boucle infinie------
while(1)
             // mettre l'instruction pour commencer la boucle infinie
{
              PORTA = Dizaine_distance; // affecter la variable Dizaine_longueur au PORT A
              PORTC = Unite_distance; // affecter la variable Unite_longueur au PORT C
              if( Dizaine_longueur == 9 )
              {
              PORTB.F1=1;
                                             // on active l'électroaimant pour couper le câble
              Delay_ms(2000);
                                            // attendre 2 secondes
                                            // on désactive l'électroaimant
              PORTB.F1 = 0;
              Dizaine_distance = 0; // on initialise la variable Dizaine_longueur à 0.
              }
```

Q18: 1 pt

A B C X

Q19: 1 pt

A B C **X**

Q20: 1 pt

A B C D
X ...

Q21: 1 pt

A B C D E X

Q22: 1 pt

A B C **X**

