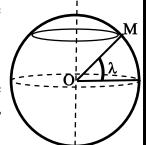
# ROTATION D'UN CORPS SOLIDE AUTOUR D'UN AXE FIXE

## Exercice 1


Le plateau d'un tourne disque dont le diamètre D=30 cm, effectue 33,3 tours /min autour de son axe.

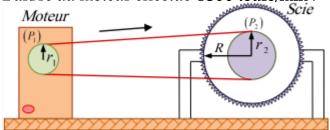
- 1) Calculer la vitesse angulaire du plateau.
- 2) Déduire la fréquence et la période.
- 3) Calculer la vitesse linéaire d'un point du plateau situé à une distance **r=5 cm** de l'axe de rotation.
- 4) Calculer le nombre de tours effectué en 10s
- 5) Quelle est la distance parcourue par un point du périphérie du plateau en 5 minutes.

## Exercice 2

On peut considérer la terre comme une sphère de rayon R=6400 Km.

1) Quelle est la période de rotation de la terre autour de son axe?

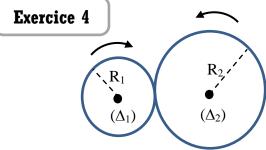



- 2) Calculer la vitesse angulaire de rotation de la terre.
- 3) Calculer la vitesse linéaire  $V_E$  à l'équateur( $\lambda$ =0°).
- 4) Calculer la vitesse linéaire  $V_M$  d'un point situé à MARRAKECH ( $\lambda$ =28°).

#### Exercice 3

La figure 1 représente une scie circulaire de rayon R qui peut tourner autour de son axe. Une courroie lie la poulie  $(P_1)$  d'un moteur électrique et la poulie  $(P_2)$  de la scie.

La courroie ne glisse pas sur les deux poulies.


L'arbre du moteur effectue 1800 tours/min.



- 1) Calculer la vitesse angulaire de l'arbre du moteur.
- 2) Déterminer la vitesse linéaire d'un point de la courroie.
- 3) En déduire la fréquence de rotation de la scie.
- 4) Trouver la vitesse d'une des dents de la scie.

Données: Rayons des poulies (P1) et (P2)

 $r_1$ =10 cm ,  $r_2$ =20 cm , R=40 cm

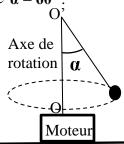


Le système représenté par le schéma est constitué de deux poulies  $(P_1)$  et  $(P_2)$  en contact, pouvant rouler l'une sur l'autre au point de contact sans glissement.

- 1) Trouver l'expression de la vitesse angulaire  $\omega_2$  de la poulie(P2) en fonction de  $\omega_1$ ,  $R_1$  et  $R_2$ .
- 2) Calculer la valeur de  $\omega_2$  sachant que  $R_{2=}2R_1$  et  $\omega_1 = 2\pi \, \text{rad.s}^{-1}$



### Exercice 5


Un solide (S) de diamètre d = 12cm est animé d'un mouvement de rotation autour d'un axe fixe. Le solide effectue un mouvement dont l'abscisse angulaire  $\theta$  varie avec le Temps comme indiqué sur le graphe présenté dans le document ci-dessous.

- 1) Quelle est la nature du mouvement du point M.
- 2) Ecrire l'équation horaire  $\theta(t)$  du mouvement du point M.
- Déterminer la période et la fréquence du mouvement.
- 4) Déduire l'équation horaire s (t) du mouvement du point M.
- 5) Calculer la longueur de l'arc  $\mathbf{d}$  entre les deux instants  $t_1$ =0,5s et  $t_2$ =1s

## Exercice 6

Un pendule simple constitué d'une bille (B) attachée au bout d'un fil de longueur L = 50 cm L'autre bout est fixée à un axe OO' d'un moteur. Avec réglage convenable, l'axe du moteur tourne 60 tr.min<sup>-1</sup>

Le pendule tourne alors en s'écartant de l'axe d'un angle  $\alpha = 60^{\circ}$ .



1) Calculer la vitesse linéaire de la bille.

#### Exercice 7



- 1) Trouver la vitesse angulaire de la grande aiguille.
- 2) Trouver la vitesse angulaire de la petite aiguille.
- 3) On considère que 12:00 l'origine du temps et l'origine, à quel instant les deux aiguilles seront confondus pour la première fois.
- 4) Sachant que la longueur de la grande aiguille est  $L_1$ =20cm et la longueur de la petite aiguille est  $L_2$ =15cm.

Représenter les deux aiguilles et les vecteurs vitesses à leurs extrémités à 5h exacte.

Utilisons les deux échelles : 1cm  $\leftrightarrow$ 8cm 1cm  $\leftrightarrow$ 5.10<sup>-5</sup> m/s

N'essayez pas de devenir un homme de succès, mais plutôt de devenir un homme de valeur. Albert Einstein