

Niveau: 1^{ére} BAC Physique Chimie

serie d'exercices Dosages directs

Année scolaire

Exercice 1

Pour déterminer la concentration C_1 en diiode $I_{2(aq)}$ d'une solution de Tarnier, on dose un volume V_1 =25,0 mL de solution de Tarnier par une solution de thiosulfate de sodium $(2Na^+_{(aq)} + S_2O_3^{2-}_{(aq)})$ de concentration C_2 =0,0200 mol/L.

Données : $I_{2(aq)}/I_{(aq)}^{-}$ et $S_4O_6^{2-}$ (aq) $/S_2O_3^{2-}$ (aq)

Le volume versé à l'équivalence est égal à V_{2E}=12,1 mL.

- 1. Etablir l'équation de la réaction de dosage.
- 2. Etablir un tableau d'avancement.
- 3. En déduire une relation entre $n(I_2)$ et $n(S_2O_3^{2-})$.
- 4. Déterminer la concentration C₁ du diiode.

Exercice 2

Un détartrant pour cafetière vendu dans le commerce se présente sous la forme d'une poudre blanche : l'acide sulfamique (H₂NSO₃H) qui, en solution, à les mêmes propriétés que l'acide chlorhydrique et que l'on notera **HA**. On dissous m = 1,50 g de ce détartrant dans de l'eau distillée à l'intérieur d'une fiole jaugée de volume

V=200~mL que l'on complète jusqu'au trait de jauge. On dispose alors d'une solution S de concentration en acide C_A . On dose $V_A=20~\text{mL}$ de S par une solution aqueuse d'hydroxyde de sodium ($Na^+(aq)+HO^-(aq)$) de concentration $C_B=0,10~\text{mol.L}^{-1}$.

Le graphique donnant la conductance G de la solution en fonction du volume V_B de solution d'hydroxyde de sodium versé est donnée ci-dessous.

On donne les équations des réactions suivantes :

- réaction de dissolution de HA dans l'eau : $HA(s) + H_2O \rightarrow O H_3O^+_{(aq)} + A^-_{(aq)}$;
- réaction support du dosage : $H_3O^+_{(aq)} + HO^- \rightarrow 2 H_2O_{(aq)}$.
- 1. Dresser le tableau permettant de suivre l'évolution du dosage en fonction de l'avancement x.
- 2. Définir l'équivalence du dosage. Quelle relation peut-on écrire entre les différentes quantités de réactifs à l'équivalence ?
- 3. Comment peut-on déterminer graphiquement le volume V_{BE} de solution d'hydroxyde de sodium versé à l'équivalence ? Déterminer graphiquement V_{BE} . En déduire la concentration C_A de la solution S.
- 4. Calculer la masse d'acide sulfamique présente dans S ; en déduire le pourcentage massique de cet acide dans le détartrant étudié.

Données : Masse molaire moléculaire de l'acide sulfamique : $M(HA) = 97,0 \text{ g.mol}^{-1}$

Exercice 3

Le gel détartrant est dilué pour obtenir une solution de concentration 100! fois plus faible. Un volume V=5,0mL de la solution diluée est introduit dans un bécher, auquel on ajoute 170 mL d'eau distillée. Un Titrage conductimétrique est alors réalisé avec une solution aqueuse d'hydroxyde de sodium $(Na^+_{(aq)};HO^-_{(aq)})$ de concentration $2,0.10^{-2}$ mol.L⁻¹. Les mesures de conductivité σ au cours du titrage, en fonction du volume V de solution titrante versée, sont présentées dans le tableau ci-dessous.

V(mL)	0	2	4	6	8	10	12	14	16	18	20	22
σ(mS/m)	56,61	49,38	42,4	35,2	28,2	22,6	23,8	28,3	32,8	37,4	41,9	46,4

- 1. Faire un schéma légendé du montage permettant de réaliser le titrage conductimétrique.
- 2. Ecrire l'équation de la réaction support du titrage.
- 3. Déterminer le volume de solution titrante permettant d'atteindre l'équivalence.
- 4. En déduire la concentration molaire du gel détartrant en acide chlorhydrique.
- 5. La densité du gel détartrant est de 1,07. Le résultat de la mesure est-il en accord avec l'indication du fabricant ?