II. Extraction des espèces chimiques

Exer	cice	1	

Cocher la réponse exacte

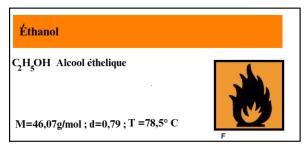
- $1.\ Lorsque$ deux liquides ne sont pas miscibles , celui qui a la plus grande densité :
 - $\hfill \square$ Constitue la phase supérieure
 - □ Constitue la phase inférieure
 - ☐ Les deux liquides ne forment qu'une seule phase
- 2. Lors d'une extraction liquide liquide , l'espèce chimique à extraire doit :
 - ☐ être plus soluble dans le solvant initial que dans le solvant extracteur
 - \square être moins soluble dans le solvant initial que dans le solvant extracteur
 - ☐ être insoluble dans le solvant extracteur

Exercice 2

Les énoncés suivants sont - elles exacts? Corriger ceux qui ne le sont pas.

- 1. La décantation liquide liquide permet de séparer des liquides miscibles .
- 2. Lors d'une préparation d'une tisane à partir des feuille de tilleul et d'eau chaude ,on réalise un infusion .
- 3. L'hydrodistillation correspond à un entraînement par de la vapeur d'eau .
- 4. Les technique d'extraction sont aujourd'hui encore empirique.
- 5. Dans une extraction par solvant , l'espèce chimique à extraire doit être le moins soluble possible dans le solvant extracteur que dans son milieu d'origine .

- 6. La phase inférieure est constituée par l'espèce chimique qui possède la densité la plus faible.
- 7. La densité a une importance dans le choix du solvant extracteur lors de la mise en uvre d'une extraction par solvant .
- 8. Lors d'une hydrodistillation , on obtient un distillat constitué d'une phase organique qui contient l'huile essentielle et d'une phase aqueuse qui contient de l'eau . [?]


Exercice 3 -

Au cours d'un TP , on effectue l'extraction par solvant de leucalyptol . Pour cela , on utilise un solvant extracteur judicieusement sélectionné ainsi qu'une ampoule à décanter . Á l'aide des informations fournis ci-dessous sur les produits chimiques disponibles au laboratoire le jour de la manipulation , représenter le schéma de l'ampoule à décanter après la phase de décantation en précisant la nature de chaque phase ainsi que leur contenu . Justifier

	Cyclohexane	Toluène	Ethanol
Densité	0.78	0.87	0.79
Miscibilité à l'eau	Non	Non	oui
Solubilité d'euca-	Très important	faible	Très important
lyptol			

Exercice 4 -

L'étiquette d'un flacon d'éthanol présente les informations ci - après :

On souhaite vérifier la densité de l'éthanol . On dispose pour cela d'une balance , d'éprouvettes graduées , de béchers et d'un flacon d'éthanol .

- 1. Préciser les mesures de sécurité à respecter pour manipuler sans danger l'éthanol.
- 2. Proposer un protocole permettant de déterminer la densité de l'éthanol.
- 3. Lors d'une expérience , on a trouvé qu'un volume V=20ml d'éthanol a une masse m=15,8g , alors que le même volume d'eau a une masse m=20,0g .

En déduire la densité de l'éthanol par rapport à l'eau.

Exercice 5

L'extraction de l'huile essentielle de la vande s'effectue à l'aide d'un montage à l Entraı̂nement à la vapeur .

- 1. Faire un schéma légendé du dispositif d'hydrodistillation .
- 2. Quel est le rôle de la vapeur d'eau? Celui du réfrigérant à eau?
- 3. Représenter le contenu de l'erlenmeyer après l'hydrodistillation. Justifier.

A fin de récupérer l'huile essentielle du distillat , on effectue une extraction par solvant . On introduit dans une ampoule à décanter le distillat , 10,0ml d'eau salée et 10,0ml de solvant extracteur . On bouche , on agit , on dégaze et on laisse décanter .

- 4. Quel est l'intérêt d'ajouter de l'eau salée .
- 5. A l'aide des données, quel solvant extracteur peut-on choisir? Justifier.
- 6. Représenter l'ampoule à décanter après décantation . Légender en justifiant.

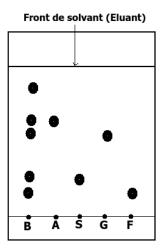
	eau	Eau salée	Cyclohexane	Essence de	Éther éthy-
				lavande	lique
Densité	1,00	1,13	0.78	0,89	0,71
Solubilité			Nulle	Faible	Nulle
dans l'eau					
Solubilité			Nulle	Très faible	Nulle
dans l'eau					
salée					
Solubilité	nulle	Nulle		Élever	
dans l'éther					
éthylique					
Solubilité	nulle	nulle		Très élevée	
dans le cy-					
clohexane					

III. Séparation et identification d'espèce chimique : exercices

Exercice 1
Cocher la réponse exacte
1. Lors d'un chromatographie , l'éluant permet de :
□ déposer le mélange
□ séparer les espèces chimique du mélange
□ révéler le chromatogramme
2. Lors de la réalisation d'une chromatographie , la ligne de dépôt doit être :
□ plus basse que le niveau de l'éluant dans la cuve
□ plus haute que le niveau de l'éluant dans la cuve
\Box à la même hauteur que le niveau de l'éluant dans la cuve
3. Le rapport frontal s'exprime en :
□ mètre
□ centimètre
□ n'a pas d'unité
4. A sa température de fusion , une espèce chimique passe de :
☐ l'état liquide à l'état gazeux
☐ l'état solide à l'état gazeux
☐ l'état solide à l'état liquide

Exercice 2

On a réaliser la chromatographie sur couche mince de deux échantillon et une référence . L'exploitation du chromatogramme fournit les résultats suivant :


- front de l'éluant : $d_E=8,0cm$ échantillon A : deux touches situées à $d_1=3,0cm$ et $d_2=4,0cm$ de la ligne de dépôt .
- échantillon B : une tache située à $d_3=5,0cm$ de la ligne de dépôt . référence (menthol) ; rapport frontal $R_f=0.5$
- a. Réaliser un schéma du chromatogramme .
- b. la chromatographie a-t-elle mis en évidence des espèces chimiques pures?
- c. les échantillons A et B contiennent du menthol?

Exercice 3 -

On désir vérifier si une bouteille de boisson au cola "light" contient quand même le sucre .

Pour cela on réalise la chromatographie de cette boisson (B) en la comparant à celle de l'aspartame (A) et des sucre comme le glucose (G), le fructose (F) et le saccharose (S).

- 1. Décrire le protocole expérimental pour réaliser une chromatographie .
- 2. Donner vod conclusions en observant le chromatogramme ci-contre .
- 3. Rappeler le test chimique à utiliser pour détecter la présence de sucre .
- 4. Étude du chromatogramme;
- a. Calculer le rapport frontal de l'aspartame $R_f(A)$ et celui du glucose $R_f(G)$
- b. Ces R_f sont ils les mêmes si l'on change d'éluant? de support?

Exercice 4 -

on effectue la chromatographie d'un sirop de menthe à l'aide d'une phase fixe , le papier Whatman , et d'un mélange eau salée - éthanol . sur la ligne de base , on dépose un échantillon de sirop de menthe , un échantillon du colorant alimentaire E102 (Jaune de tartrazine) , et un échantillon du colorant E 131 (Blue de Patenté) .

Après avoir révélé le chromatogramme , on constate que le sirop de menthe contient une tâche jaune et une tâche bleue . On fournit les rapport frontaux de ces deux tâches .

Tâche jaune	0,42
Tâche bleue	0,80

- 1. Quel est le rôle du mélange eau salée éthanol? Expliquer
- 2. Représenter et légender le chromatogramme obtenu , si le front du solvant se situe à 7,0cm de la ligne de base .

