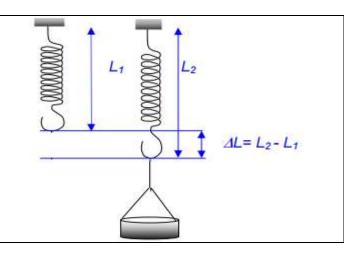
Equilibre d'un corps solide soumis à deux forces


I-Force exercée par un ressort

1- Allongement d'un ressort

Soit un ressort de longueur à vide L₁

Lorsque le ressort exerçant une force de tension à son extrémité libre sa longueur modifie devient L₂

L'allongement ' ΔL ' du ressort est alors $\Delta L = |L_2 - L_1|$

2- Expression T tension de ressort

Lorsqu'on suspend un solide à un ressort, le ressort exerce une action sur le solide.

Cette action est modélisée par une force : la tension du ressort \vec{T} .

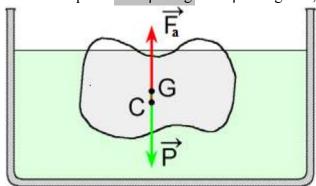
- Point d'application : point d'accroche du ressort
- Direction : celle du ressort
- Sens : opposée à la déformation du ressort
- Valeur : T=k. $|L_2-L_1|$

avec k la constante de raideur du ressort en $N.m^{-1}$ et l'allongement $|L_2-L_1|$ en **m**.

Remarque

On peut mesurer les effets statiques d'une force par la déformation provoquée sur un ressort : On appelle dynamomètre un dispositif élastique dont la déformation (allongement) est proportionnelle à la force qu'on exerce sur lui et qui donne de ce fait la mesure de cette force.

II - La poussée d'Archimède


1- Définition

La poussée d'Archimède C'est une force de contact exercée par un fluide (liquide ou gaz) au repos sur un solide immergé .

2- Caractéristique de La poussée d'Archimède

Un solide S de volume V totalement immergé dans un fluide homogène de masse volumique ρ est soumis à des actions mécaniques de la part de ce fluide.

- Point d'application : centre d'inertie du fluide déplacé= (centre d'inertie de partie immergé)
- Direction : verticale
- Sens : vers le haut
- Valeur : égale au poids de fluide déplacé $Fa = \rho \cdot V \cdot g$ avec ρ en kg.m⁻³, V en m³ et g en N.kg⁻¹

Remarque

La poussée d'Archimède dans l'air est souvent négligée car la masse volumique de l'air est très faible $(\rho_{air} = 1.3 \text{ kg.m}^{-3})$.

