

الامتحان الوطني العوحد للبكالوريا الدورة العادية 2024 - الموضوع -

المملكة المغربية وزارة التربية المولمنية وزارة التربية المولمنية والمعابدة المولمنية والتعليم الأولس والرياضة المولمنية المول

РРРРРРРРРРРРРРРРРРР NS 202A

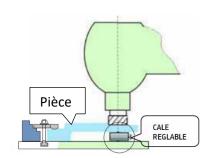
المركز الوطني للتقويم والامتحانات

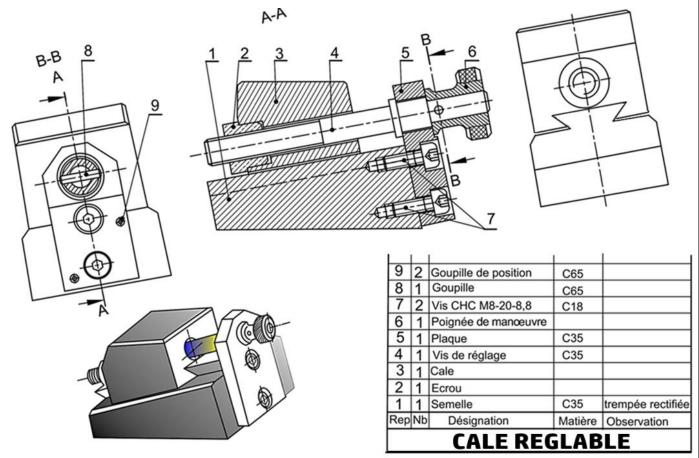
4h	مدة الإنجاز	اختبار توليفي في المواد المهنية (الجزء الأول) - الفترة الصباحية	المادة
10	المعامل	شعبة الهندسة الميكانيكية مسلك التصنيع الميكانيكي	الشعبة المسلك

Constitution de l'épreuve

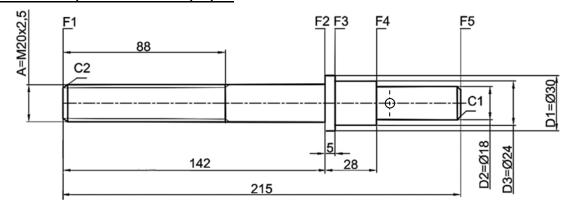
- Constitution de l'épreuve et Consignes :page 1/12
- Présentation du support de l'épreuve :pages 2/12 et 3/12
- Situation d'évaluation thématique 1 : Usinage conventionnel complexepages 3/12 à 6/12
- Situation d'évaluation thématique 2 : Réalisation d'opérations de rectification ... pages 6/12 et 7/12
- Situation d'évaluation thématique 3 : Programmation de MOCN...... pages 7/12 à 10/12
- Situation d'évaluation thématique 4 : Mécanique appliquée et RDMpages 11/12 et 12/12

Consignes pour le candidat et les surveillants


- Seulement les calculatrices scientifiques non programmables sont autorisées;
- Aucun document n'est autorisé :
- L'utilisation du téléphone portable et de tout autre appareil de communication ou de télécommunication est strictement interdite :
- Les candidats rédigeront leurs réponses sur les documents pré-imprimés prévus à cet effet, ils sont à rendre de la page 3/12 à la page 12/12 ;
- <u>Les documents à rendre de la page 3/12 à la page 12/12 ne doivent en aucun cas porter de signes distinctifs : nom ou prénom ou numéro d'examen. Ces documents à rendre doivent être agrafés, par le bas, avec la feuille blanche quadrillée de l'examen du baccalauréat.</u>

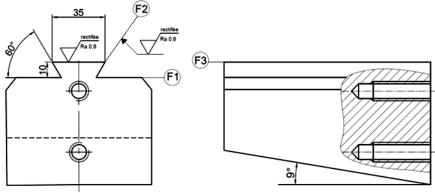

Présentation du support de l'épreuve

Présentation:


La prise de pièce n'est pas généralement suffisante pour empêcher sa flexion et éviter les vibrations. Afin de réduire l'influence des efforts de coupe et d'améliorer la rigidité de la prise de pièce, on utilise une CALE REGLABLE (Voir dessin d'ensemble ci-dessous).

Dessin d'ensemble partiel : CALE REGLABLE

Dessin de définition partiel : Vis de réglage 4.


L	F3	上	t ₁	D3
	D2	0	Øt2	D3
	F2	//	tз	F3

Matière: C35 C1 = C2 = 1x45°

Tolérance générale sauf indication: ±0,2

Dessin de définition partiel : semelle 1.

Situation d'évaluation thématique 1 : Usinage conventionnel complexe :

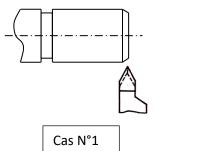
/1pt

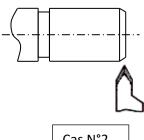
A. Etude de la partie filetée de la vis de réglage 4 :

L'objectif de cette partie est la réalisation de l'opération du filetage (A= M20x2,5), en se référant à la page 2/12:

1. Compléter le tableau par la signification de la désignation suivante M20 x 2,5 : /1,5pt

M	20	2,5	


2.	. Préciser si le pas à réaliser de la vis de réglage 4 est débrayable ou non débrayable, sachant qu	ie le pas
	de la vis-mère P= 6 mm, Justifier votre réponse :	/2pts


3. Calculer le nombre de dents du pignon et le nombre de graduations du disque : on donne l'équipement de l'indicateur de retombée dans le pas (disque gradué et pignon) suivant :

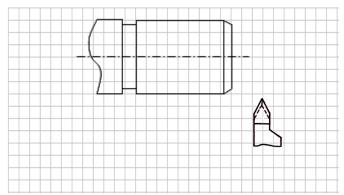
Pignon	Disque gradué contenant
35 dents	5 graduations
36 dents	7 graduations
36 dents	9 graduations

B. Etude de l'hélice du filetage.

1. Indiquer, sur les croquis ci-dessous, les mouvements de génération de la pièce et de l'outil nécessaires à l'usinage du filetage : /2pts

Cas N°2

2. Donner le nom du sens de l'hélice obtenu suivant les deux cas (à droite ou à gauche) :

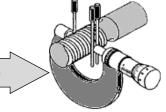

Cas N°1 : Hélice

Cas N°2: Hélice

3.	Donner le nom de l'instrument pour positionner l'outil à fileter :	/1 pt

4. Tracer le cycle de travail de l'outil à fileter pour une passe, en précisant le nom de chaque mouvement de l'outil en utilisant l'indicateur de retombée dans le pas : /2pts

5.	Calculer la profond	eur h3 du fi	letage :				/2pts
				_			


6. Donner l'avance **f** (mm/tr) à afficher sur la machine : /1 pt

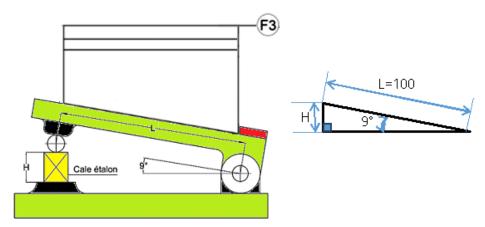
 Compléter le tableau suivant, par le nom de la méthode de contrôle du filetage proposée et la valeur du diamètre des trois piges à utiliser pour contrôler M20x2,5: /1,5 pt

Le nom de la méthode de contrôle du filetage	La valeur du diamètre des trois piges

Pas à réaliser	1,75	2	2,5	3	3,5
d: diamètre de pige	1,010	1,154	1,443	1,732	2,02

La méthode de contrôle du filetage proposée

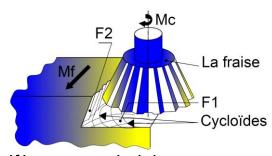
C. L'objectif de cette partie est d'étudier la réalisation de la queue d'aronde de la semelle (1) sur une fraiseuse verticale universelle. (Voir dessin de définition partiel page 3/12) :


L'usinage de la gueue d'aronde de la semelle sera réalisé comme suit :

N° ordre des opérations	Opérations à effectuer	Croquis
1	Fraiser un épaulement sur chaque côté (tenon) (a-a')	
2	Ebaucher la queue d'aronde à 60° des deux côtés (b-b')	a Y
3	Finir, sur les deux côtés, le fond de la queue d'aronde à la cote 10 (c-c')	
4	Semi-finir la queue d'aronde à 60° et à la cote Y _{1/2f} des deux côtés (d-d')	
5	Finir par rectification, la queue d'aronde à 60° des deux côtés et à la cote Y= 35 (e-e)'	

❖ Opération 4 à effectuer : Semi-finir la queue d'aronde à 60° et à la cote Y_{1/2f} des deux côtés (d-d').

Avant de procéder à l'usinage de cette opération, un réglage s'avère nécessaire pour rendre la surface F3 parallèle au mouvement d'avance, cela nécessite un réglage à l'aide de **la barre sinus** :

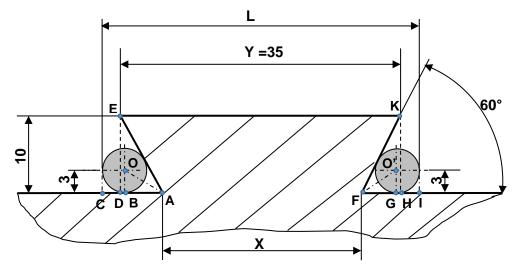


1.	Déterminer la valeur de la hauteur H de la cale étalon pour régler l'inclinaison de l'angle 9° :	/1pt
		•••••

2. Compléter le tableau par les noms des fraises à utiliser et le nom de la machine à utiliser pour réaliser les passes (a et a') et (b et b') de la queue d'aronde (tableau page 4/12) : /1,5pt

	Nom de la fraise	La machine
Passes (a et a')		
Passes (b et b')		

3. Préciser le mode de travail de la surface **F2** (en opposition ou en avalant) et justifier votre réponse. /0,5pt

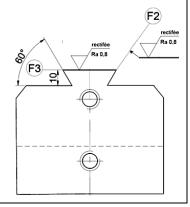


Cocher les cases correctes, en se référant au croquis ci-dessus, correspondantes aux modes d'obtention des surfaces F1 et F2 relatifs à l'opération 2 (Ebaucher la queue d'aronde à 60° des deux côtés (b-b'), page (4/12).

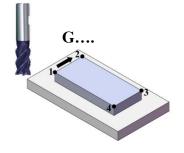
Les	Les modes d'obtention				
surfaces	Fraisage de face ou en bout	Fraisage de profil ou en roulant			
F1					
F2					

5. On désire déterminer la dimension **L** (en mm) nécessaire au contrôle de la cote **X**, et de choisir l'instrument de mesure à utiliser, en utilisant deux piges de **Ø6** mm représentées sur le schéma suivant :

Nota: pour les calculs, se limiter à deux chiffres après la virgule.


5.1. Calculer la dimension AD en tenant compte de l'angle (\widehat{EAD}) :	/1pt
5.2. En déduire FH :	/1pt
5.3. Déterminer la dimension X :	/2pts
5.4. Calculer la dimension AB en tenant compte de l'angle (\widehat{OAB}) :	/1pt
5.5. En déduire FG :	/1pt
5.6. Déterminer la dimension L sur piges, qui devra être lue sur l'instrument de contrôle :	/2pts
5.7. Proposer un instrument de mesure pour mesurer la cote L :	/1pt

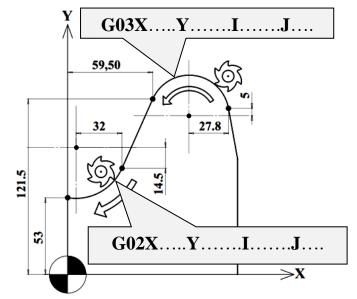
Situation d'évaluation thématique 2 : Réalisation d'opérations de rectification


/6pts

Rectification des surfaces F2 et F3 de la queue d'aronde (figure : ci-contre).

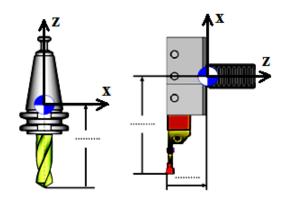
Pour des raisons de frottement, qui dépend essentiellement des états de surfaces et des conditions de dureté des surfaces en contact, on va faire appel au traitement thermique pour augmenter la dureté de la pièce et à la rectification au niveau des surfaces **F2** et **F3** de la queue d'aronde.

<u> </u>	- ti		√			
<u> </u>	ال <u>صا</u> 7 مدي	.00 4	لدورة العادية 2024 – الموضوع		•	
12	7 NS 2	(02A	ة (الجزء الأول) - الفترة الصباحية- سلك التصنيع الميكانيكي	ي المواد المهني له المركان كرة م	- مادة: اختبار توليفي ف شعرة المندر	
1 [Onner deu	x crit	همت المحقيع المجاوري . ères de choix de l'opération de rectifica		مصور ، جبعد	
٠. ـ	Joinner deu	X C110	ieres de choix de l'operation de rectifica			7100
	•••••			•		
	Compléter l Surfaces F2		leau suivant par les noms des outils et l	e nom de la	machine à utiliser	
5					Novo do la manchina	/2 pts
	Surface: F2	S	Nom de l'Outil		Nom de la machine	!
	F3			••••		
3. F	Préciser un	moy	en de fixation de la pièce sur la machine	:		/0,5pt
4 5			o: /W) o., fo.,,, /F) .	•••••		/0.554
4. r	керопаге р	ai vid	ai (V) ou faux (F) :			/0,5pt
			La rectification est une opération d'us	inage par :	V ou F	
			Enlèvement de la matière		•••••	
			Déformation de la matière			
5. F	Préciser le t	уре (de la meule à utiliser (tendre ou dure) et	justifier vot	re réponse :	/1pt
6. [Donner deu	x rôle	es de l'arrosage (lubrification) pendant l	 'opération c	le rectification :	/1pt
				•		
Situa	ntion d'éva	<u>luati</u>	on thématique 3 : Programmation de N	<u> </u>		/24,5pts
Par	tie 1 :					
	éfinir un ax					/1 pt
2. [Donner la si		cation en langage FANUC des codes G et			/3 pts
		_				
			ournage) :			

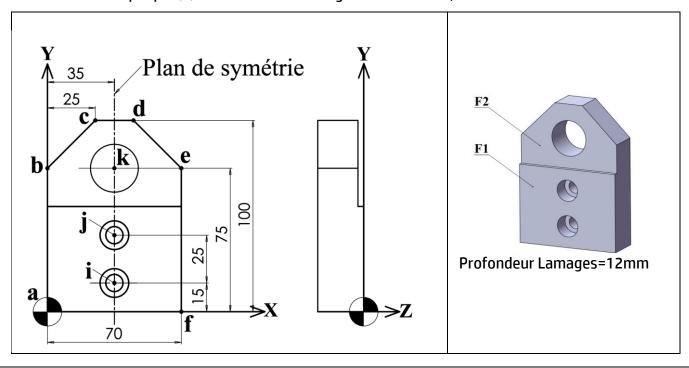


/1 pt

3. Indiquer la correction de rayon d'outil représenté sur la figure ci-dessous par G41 ou G42 :



4. Compléter les deux blocs permettant de réaliser les deux arcs de cercles du contour représenté sur la figure ci-dessous : / 4 pts



5. Indiquer les jauges en X et en Z (Jx et Jz) relatives aux outils représentés ci-dessous:

/3 pts

<u>Partie 2:</u>
Soit à réaliser la plaque (5) sur un centre d'usinage vertical 3 axes, avec calculateur FANUC 0i-M.

لصفحة	١	
12	9	NS 202A

 Remplir le tableau par les coordonnées en mode absolu des points caractéristiques du profil à réaliser : /4,5pts

Points	a	b	С	d	e	f	i	j	k
Х									
Υ									

 Déterminer la fréquence de rotation N de l'outil T04 pour réaliser le perçage des trous i et j, sachant que la vitesse de coupe est de 25 m/min : /2 pts

Données:

Opérations	Outils	Fréquence de rotation en tr/min	Vitesse d'avance en mm/min
Surfaçage F1	T01	1000	200
Surfaçage F2	T01	1000	200
Contournage profil a, b, c, d, e, f, et a	T02	1200	150
Centrage k, j et i	T03	1500	100
Perçage Ø9 i, j et k	T04		
Perçage Ø20 k	T05	400	40
Perçage Ø25 k	T06	300	30
Lamage i et j	T07	250	20

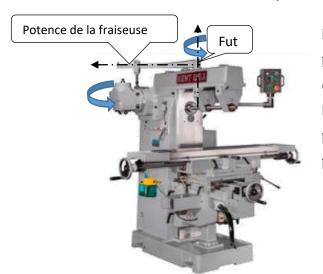
1	N=	
3.	En déduire la vitesse d'avance Vf si l'avance f=0.1 mm/tr :	/1 pt
_		
•	Vf =	

الصفحة 10 NS 202A

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 - الموضوع - مادة: اختبار توليفي في المواد المهنية (الجزء الأول) - الفترة الصباحية - شعبة الهندسة الميكانيكية مسلك التصنيع الميكانيكي

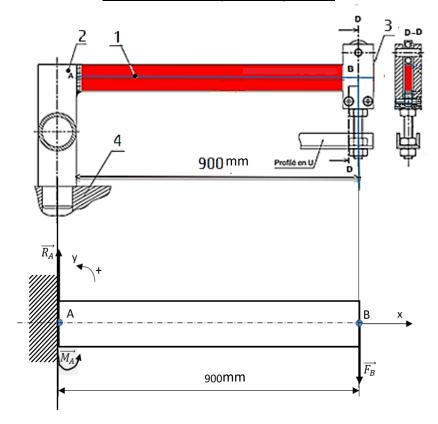
4. Compléter le programme à CN permettant la réalisation des opérations décrites dans le tableau des données. (voir pages 8/12 et 9/12) : /5 pts

Programme à CN:


% 0 1775;	(CENTRAGE k j i)	G98Z-30R5Q10F40;
G54G21G17G80G90G40G49G94G97;	M06 ;	G80;
	S1500;	M05;
(SURFAÇAGES F1 et F2 NON TRAITES)	G00X35Y75; (point k)	(PERÇAGE Ø25)
	G43Z5 ;	Т06М06;
	G81Z-6R5;	S300M03;
(CONTOURNAGE PROFIL)	Y40; (point j)	G00G43H06Z5;
то2;	; (point i)	G83G98Z-30R5Q15;
М3 ;	G80;	;
GOX-30Y-30; (point d'approche)	M05;	M05;
H02Z5M08;	(PERÇAGE Ø9 i j k)	(LAMAGE)
Z-20F150;	;	T07M06;
GD02X0; (compensation)	S900M03;	S250M03;
Y75; (point b)	G00G43H04Z5;	G00X35Y15; (point i)
; (point c)	G83G98Z-30R5Q5F88;	G43H07Z5;
X45; (point d)	Y40; (point j)	G81R5F20;
X70Y75; (point e)	; (point k)	Y40; (point j)
YO; (point f)	G80	G80;
X-30;	M05;	M05;
G40Y-30;	(PERÇAGE Ø20)	T00 M06 ;
G00 Z5 ;	T05M06;	;
M05;	;	;
	G00G43H05Z5;	%

Situation d'évaluation thématique 4 : Mécanique appliquée et résistance des matériaux

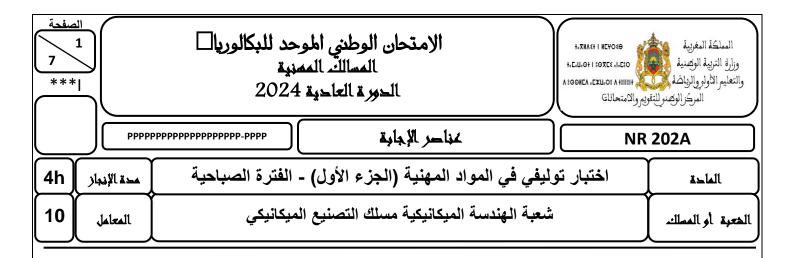
/10 pts


Vérification de la résistance de la potence de la fraiseuse :

L'étude proposée concerne la potence d'une fraiseuse qui permet le changement de la tête de la fraiseuse (Horizontale ou verticale).

La potence (1), de poids négligeable, est assimilée à une poutre AB de section rectangulaire encastrée sur le fut (2) au point A. sur l'extrémité B est exercé un effort F_B = 500 N.

Dessin d'ensemble partiel de potence :



Travail demandé

En appliquant le principe fondamental de la statique :

1.	Calculer la réaction R_{A} (en N) au point d'encastrement A.	/1pt
_		
2.	Calculer le moment d'encastrement M _A (en N.m) au point d'encastrement A.	/1pt

12	الصفحة 12	NS 202A		لفترة الصباحية-	دورة العادية 024 (الجزء الأول) - ا ملك التصنيع الميكا	مواد المهنية	يفي في الد	اختبار توا		
3.	-	er l'équation e AB : 0 ≤ x		tranchant Ty le	e long de la pou	tre et calcu	ıler sa va	leur.		/1pt
4.		er l'équation e AB : 0 ≤ x		nt fléchissant N	Mfz le long de la	poutre et	calculer	sa valeu	r aux points A et	B. /2pts
5.	Tracer $\overrightarrow{R_A}$	les diagram A A	imes de l'eff	ort tranchant of the second of	Ty et du momer		ant Mfz: $\overrightarrow{F_B}$	\vec{x}	A-A y 10 Echelle des	
	\overrightarrow{Mfz}	А					В	\vec{x}	Echelle des Mo forces 1cm ——	
					fléchissant <i>M</i> j					/1pt
					inte normale d	<i>v</i>			e I _{GZ} =11520 mn	/1pt

Éléments de correction

Observation:

Le correcteur est tenu de respecter à la lettre les consignes relatives aux répartitions des notes indiquées sur les éléments de correction

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 - عناصر الإجابة - مادة: اختبار توليفي في المواد المهنية (الجزء الأول) - الفترة الصباحية - شعبة الهندسة الميكانيكي

(/29,5pts) Situation d'évaluation thématique 1 : Usinage conventionnel complexe :

A. Etude de la partie filetée de la vis de réglage 4 :

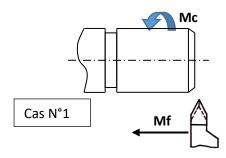
1. Compléter le tableau par la signification de la désignation suivante M20 x 2,5:

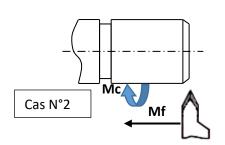
/1,5pt

M	20	2,5
Profil métrique ISO	Diamètre nominal	Le pas

Préciser si le pas à réaliser de la vis de réglage 4 est débrayable ou non débrayable, sachant que le pas de la vis-mère P= 6 mm, justifier votre réponse : /2pts
Le pas à réaliser (p=2,5 mm) est non débrayable car Le pas à réaliser n'est pas sous multiple du pas de la vis-mère (P = 6 mm).

3. Calculer le nombre de dents du pignon et le nombre de graduations du disque :


/2,5pt


$$\frac{p}{P}=\frac{2.5}{6}=\frac{25}{60}=\frac{5}{12}$$
; soit $5\times7=35$ dents
Pignon 35 dents; nombre de graduations 7

B. Etude de l'hélice du filetage.

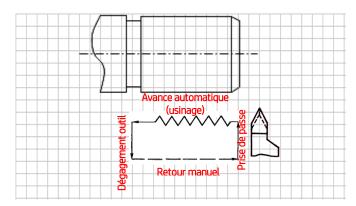
1. Indiquer, sur les croquis ci-dessous, les mouvements de génération de la pièce et de l'outil nécessaires à l'usinage du filetage :

/ 2 pts

2. Donner le nom du sens de l'hélice obtenu suivant les deux cas (à droite ou à gauche) :

/1pt

Cas N°1 : Hélice à droite


Cas N°2 : Hélice à gauche

3. Donner le nom de l'instrument pour positionner l'outil à fileter :

/1 pt

Calibre d'angle ou (queue de poisson)

4. Tracer le cycle de travail de l'outil à fileter pour une passe, en précisant le nom de chaque mouvement de l'outil en utilisant l'indicateur de retombée dans le pas : /2pts

5. Calculer la profondeur du filetage h3:

/2pts

 $h3 = 0.613 \times p = 0.613 \times 2.5 = 1.53$

h3 = 1,53 mm

6. Donner l'avance f (mm/tr) à régler sur la machine :

/1 pt

/1pt

7. Compléter le tableau suivant, par le nom de la méthode de contrôle du filetage proposée et la valeur du diamètre des trois piges à utiliser pour contrôler **M20x2,5** : /1,5 pt

Le nom de la méthode de contrôle du	ı filetage Valeur du diamètre des trois piges
Contrôle sur piges	Ø 1,443

- C. L'objectif de cette partie est d'étudier la réalisation de la queue d'aronde de la semelle (1) sur une fraiseuse verticale universelle.
 - 1. Déterminer la valeur de la hauteur H de la cale étalon pour régler l'inclinaison de l'angle 9° :

$$\sin 9 = H/L \implies H = L \sin 9 = 15.64 \text{ mm}$$

 Compléter le tableau par les noms des fraises à utiliser et le nom de la machine à utiliser pour réaliser les passes (a et a') et (b et b') de la queue d'aronde : /1,5pt

	Nom de la fraise	La machine
Passes (a et a')	Fraise cylindrique deux tailles	Fraiseuse verticale
Passes (b et b')	Eraica capiqua daux taillac a = 60°	Ou
	Fraise conique deux tailles α = 60°	Fraiseuse universelle

3. Préciser le mode de travail de la surface F2 (en opposition ou en avalant) et justifier votre réponse.

/0,5pt

En opposition car le sens d'avance de la pièce est l'opposé du sens de rotation de la fraise dans la zone de coupe.

Cocher les cases correctes correspondante aux modes d'obtention des surfaces F1 et F2 relatifs à l'opération 2 (Ebaucher la queue d'aronde à 60° des deux côtés (b-b')).

Les	Les modes d'obtention		
surfaces	Fraisage de face ou en bout	Fraisage de profil ou en roulant	
F1	•		
F2		.	

- 5. Nota: pour les calculs, se limiter à deux chiffres après la virgule
- 5.1. Calculer la dimension AD en tenant compte de l'angle (\widehat{EAD}) :

/1pt

$$tg(\widehat{EAD}) = \frac{ED}{AD}$$
; $AD = \frac{ED}{Tg(\widehat{EAD})}$; $AD = \frac{10}{tg(60^{\circ})} = 5,77$; $AD = 5,77 \text{ mm}$

5.2. En déduire FH : /1pt

FH=AD=5,77 mm

5.3. Déterminer la dimension X : /2pts

$$X = Y - AD - FH = 35 - 2 \times 5.77 = 23.46$$
 $X = 23.46 mm$

5.4. Calculer la dimension AB en tenant compte de l'angle (\widehat{OAB}) : /1pt

$$tg(\widehat{OAB}) = \frac{OB}{AB}$$
; $AB = \frac{OB}{Tg(\widehat{OAB})}$; $AB = \frac{3}{tg(30^{\circ})} = 5,19$; $AB = 5,19 \text{ mm}$

5.5. En déduire FG : /1pt

FG=AB=5,19 mm

5.6. Déterminer la dimension L sur pige, qui devra être lue sur l'instrument de contrôle :

/2pts

 $L = X + 2AB + 2R = 23,46 + 2 \times 5,19 + 6 = 39,84$

L =39.84 mm

5.7. Proposer un instrument de mesure pour mesurer la cote L:

/1pt

Calibre à coulisse ou micromètre 25-50

Situation d'évaluation thématique 2 : Réalisation d'opérations de rectification

/6pts

1. Donner deux critères de choix de l'opération de rectification :

/1pt

États de surfaces et des conditions de dureté des surfaces en contact

2. Compléter le tableau suivant par les noms des outils et le nom de la machine à utiliser pour finir les surfaces **F2** et **F3** : /2 pts

Surfaces	Nom de l'Outil	Nom de la machine		
F2	Meule assiette	Rectifieuse plane		
F3	Meule plate cylindrique	nectifieuse pluffe		

3. Préciser un moyen de fixation de la pièce sur la machine :

/0,5pt

Table (ou plateau) magnétique.

4. Répondre par vrai (**V**) ou faux (**F**):

/0,5pt

La rectification est une opération d'usinage par :	V ou F
Enlèvement de la matière	V
Déformation de la matière	F

5. Préciser le type de la meule à utiliser (tendre ou dure) et justifier votre réponse :

/1pt

Le type de la meule à utiliser est tendre car la pièce est traitée avant l'opération de rectification.

6. Donner deux rôles de l'arrosage (lubrification) pendant l'opération de rectification :

/1pt

- Evacuer la chaleur ;
- Entraîner les copeaux loin de la zone de travail.

Situation d'évaluation thématique 3 : Programmation de MOCN

/24,5pts

Partie 1:

1. Définir un **axe** :

/1 pt

Axe : Mouvement commandé (asservi) en vitesse et en position.

2. Donner la signification en langage FANUC des codes G et M suivants :

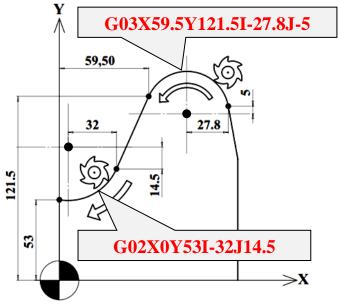
/3 pts

/1 pt

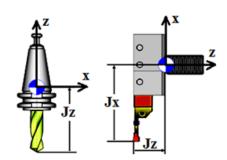
G19: Sélection du plan YZ

G49: Annulation du correcteur de longueur d'outil

G74(En tournage): Cycle de perçage transversal avec débourrage


G80 : Annulation des cycles fixes M01 : Arrêt optionnel du programme M98 : Appel de sous-programme

3. Indiquer la correction de rayon d'outil représenté sur la figure ci-dessous par G41 ou G42 :



4. Compléter les deux blocs permettant de réaliser les deux arcs de cercles du contour représenté sur la figure ci-dessous : / 4 pts

5. Indiquer les jauges en X et en Z (Jx et Jz) relatives aux outils représentés ci-dessous:

/3 pts

Partie 2:

Soit à réaliser la plaque (5) sur un centre d'usinage vertical 3 axes, avec calculateur FANUC Oi-M.

1. Remplir le tableau par les coordonnées en mode absolu des points caractéristiques du profil à réaliser :

/4,5 pts

Points	a	b	C	d	е	f	i	j	k
X	0	0	25	45	70	70	35	35	35
Y	0	75	100	100	75	0	15	40	75

2. Déterminer la fréquence de rotation de l'outil TO4 pour réaliser le perçage des trous i et j, sachant que la vitesse de coupe est de 25 m/min : /2 pts

 $N = (1000 \times Vc)/(\pi \times D)$

 $N = (1000 \times 25)/(\pi \times 9)$

N = 884,19 tr/min

3. En déduire la vitesse d'avance **Vf** si l'avance f=0.1 mm/tr :

/1 pt

 $Vf = N \times f$

 $Vf = 884.19 \times 0.1$

Vf = 88,419 mm/min

4. Compléter le programme à CN permettant la réalisation des opérations décrites dans le tableau des données (question 2): /5 pts

Programme à CN:

0.25pt/bloc (CENTRAGE k i i) % 0 1775: G54G21G17G80G90G40G49G94G97; T03M06;

(SURFAÇAGES F1 et F2 NON TRAITES)

G43 H03Z5; G81Z-6R5 F100; S300M03: (CONTOURNAGE PROFIL) Y40: (point j) G00G43H06Z5;

S1500 M03;

G00X35Y75; (point k)

T02 M06: S1200M3; GOX-30Y-30; (point d'approche) G43H02Z5M08;

G1Z-20F150; G41D02X0; (compensation)

Y75: (point b) X25Y100: (point c) (point d) X45; X70Y75; (point e) Y0; (point f)

X-30: G40Y-30; G00 Z5: M05;

Y15: (point i) G80: G80; M05: M05: (PERÇAGE Ø9 i j k) T04M06; T07M06:

S900M03; G00G43H04Z5: G83G98Z-30R5Q5F88: Y40; (point j) Y75: (point k) G80

M05: (PERÇAGE Ø20) T05M06: S400M03;

G00G43H05Z5;

G83G98Z-30R5010F40:

G80; M05:

(PERÇAGE Ø25)

T06M06;

G83G98Z-30R5015 F30:

(LAMAGE)

S250M03: G00X35Y15: (point i) G43H07Z5:

G81 Z-12R5F20; (point j) Y40:

G80: M05: T00 M06; M09:

M30; (ou M02)

%

Situation d'évaluation thématique 4 : Mécanique appliquée et résistance des matériaux /10 pts

Travail demandé : En appliquant le principe fondamental de la statique

1. Calculer la réaction R_A (en N) au point d'encastrement A.

 $\sum \overrightarrow{F_{ext}} = \overrightarrow{0} \Rightarrow R_A - F_B = 0 \Rightarrow R_A = F_B = 500 \text{ N} \Rightarrow R_A = 500 \text{ N}$

2. Calculer le moment d'encastrement M_A (en N.m) au point d'encastrement A.

 $\sum \overline{M}_{Fext/A} = \overrightarrow{0} \Rightarrow M_A - F_B \times 0.9 = 0 \Rightarrow M_A = 500 \times 0.9 = 450 \text{ N.m.}$

3. Exprimer l'équation de l'effort tranchant Ty le long de la poutre et calculer sa valeur.

/1pt

/2pts

/1pt

/1pt

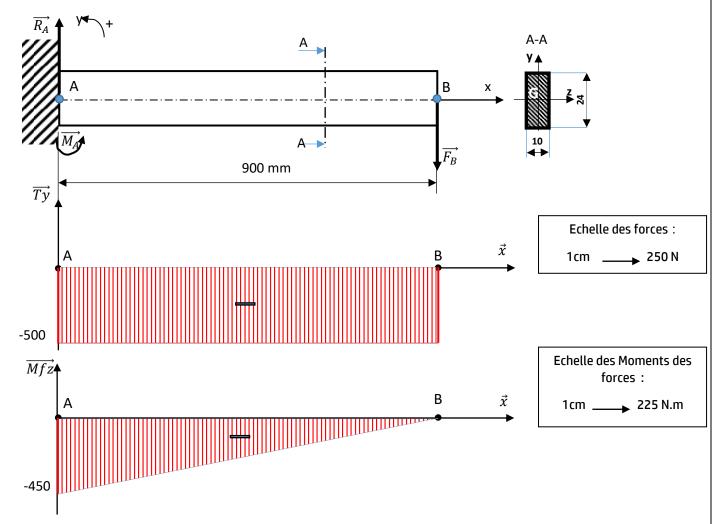
Zone AB: $0 \le x \le 900$

$$Ty = -[R_A] = -500 N$$

4. Exprimer l'équation du moment fléchissant Mfz le long de la poutre et calculer sa valeur aux points A et B.

Zone AB: $0 \le x \le 900$

$$Mf_z = -[M_A - R_A \cdot x] = R_A \cdot x - M_A = 500 \cdot x - 450 \implies Mf_z = 500 \cdot x - 450$$


$$\int Mf_z (0) = -450 \text{ N.m}$$

$$Mf_z (0,9) = 0 \text{ N.m}$$

5. Tracer les diagrammes de l'effort tranchant Ty et du moment fléchissant Mfz :

/2pts

- 6. En déduire à partir du diagramme du moment fléchissant Mfz la position de la section dangereuse /1pt

 La section dangereuse est au point A car ||Mfzmaxi|| = 450 N.m
- 7. Calculer la contrainte normale maximale de flexion $\sigma_{Max} = \frac{Mf_z max}{\frac{I_{GZ}}{v}}$ (en N/mm²), prendre I_{GZ} =11520 mm⁴ /1pt

$$\frac{I_{GZ}}{v} = \frac{11520}{12} = 960 \text{ mm}^3$$

$$\sigma_{\text{Max}} = \frac{\|Mf_z max\|}{\frac{I_{GZ}}{2}} = \frac{450 \cdot 10^3}{960} = 468,75 \text{ N/mm}^2$$

8. Vérifier la résistance de la potence à la contrainte normale de flexion sachant que **Rp =** 480 N/mm² /1pt

 $\sigma_{\text{Max}} = 468,75 \le Rp = 480 \ N/mm^2$ donc la potence résiste en toute sécurité aux effets de la contrainte normale de flexion.