فحة	الصا
	1
5	<u> </u>
*	*

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2024 -الموضوع -

المملكة المفرية وزارة التربية الولمنية الولمنية المفرية المفرية المفرية المفرية المفرية المولمنية المولمن

- **Lomos**all-

المركز الوطني للتقويم والامتحانات

4h	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية)	الشعبة المسلك

RS 24E

- The duration of the exam is four hours
- -The exam consists of 5 independent exercises
- The exercises can be treated in the order chosen by the candidate
 - Exercise1 concerns analysis(6.5 pts)
 - Exercise2 concerns analysis(3.5 pts)
 - Exercise3 concerns complex numbers.....(3.5 pts)
 - Exercise4 concerns algebra(3.5 pts)
 - Exercise5 concerns arithmetic(3 pts)

The use of the calculator is not allowed

The use of red color on sheet paper is not permitted

RS 24E

EXERCISE1: (6.5 points)

Let n be a natural number greater than or equal to 2

Consider the numerical function f_n defined on $[0,+\infty]$ by:

$$f_n(0) = 0$$
 and $\forall x \in]0, +\infty[$; $f_n(x) = x - x^n \ln x$

And let (C_n) be its curve in an orthonormal coordinate system.

- 0.25 | 1-a) Show that f_n is continuous on the right at 0
- 0.75 b) Show that: $\lim_{x \to +\infty} f_n(x) = -\infty$ and $\lim_{x \to +\infty} \frac{f_n(x)}{x} = -\infty$, then interpret graphically the obtained result.
- 0.5 Show that f_n is differentiable on the right at the point 0 and that its derivative on the right at the point 0 is equal to 1
 - d) Show that f_n differentiable on $]0,+\infty[$ and that:

0.5
$$\forall x \in]0, +\infty[; f_n'(x) = 1 - x^{n-1} - nx^{n-1} \ln x]$$

- 0.5 e) Show that f_n is strictly increasing on [0;1] and strictly decreasing on [1,+ ∞ [
- 0.5 | 2-a) Show that for $n \ge 2$, we have: $\forall x \in [0, +\infty[$; $f_{n+1}(x) \le f_n(x)$
- 0.25 b) Deduce the relative position of (C_n) and (C_{n+1})
- 0.5 Show that for $n \ge 2$, there exists a unique real number $\alpha_n \in]1;2[$ such that: $f_n(\alpha_n) = 0$ (We take $\ln 2 = 0,7$)
- 0.25 b) Verify that $(\forall n \ge 2)$ $\alpha_{n+1}^n \ln \alpha_{n+1} = 1$
- 0.25 c) Deduce that for $n \ge 2$, $f_n(\alpha_{n+1}) = \alpha_{n+1} 1$
- 0.5 d) Show that the sequence $(\alpha_n)_{n\geq 2}$, thus defined, is strictly decreasing.
- 0.25 e) Deduce that the sequence $(\alpha_n)_{n\geq 2}$ is convergent.
 - 4- We put: $\ell = \lim_{n \to +\infty} \alpha_n$
- 0.25 a) Show that: $1 \le \ell \le 2$
- 0.5 b) Show that for all $n \ge 2$, $n-1 = -\frac{\ln(\ln(\alpha_n))}{\ln(\alpha_n)}$
- 0.25 c) Suppose that $\ell > 1$. Calculate $\lim_{n \to +\infty} \frac{\ln(\ln(\alpha_n))}{\ln(\alpha_n)}$ in terms of ℓ
- 0.5 d) Deduce the value of the limit ℓ

RS 24E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - الموضوع - الموضوع - الموضوع - الموضوع الرياضيات شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية)

EXERCISE2: (3.5 points)

0.25 1-a) Calculate the integral:
$$\int_{0}^{1} \frac{1}{1+x^{2}} dx$$

0.5 b) For all
$$n \ge 1$$
, we put: $u_n = \sum_{k=1}^{k=n} \frac{n}{n^2 + k^2}$.

Show that the sequence $(u_n)_{n\geq 1}$ is convergent and determine its limit.

0.25 2- Show that:
$$\int_{0}^{1} \frac{1}{(1+x^2)^2} dx \le 1$$

0.5 3-a) Show that:
$$(\forall x \in [0,1])$$
; $0 \le e^x - 1 \le e.x$

0.25 b) Deduce that:
$$(\forall x \in [0,1])$$
; $0 \le e^x - 1 - x \le \frac{e}{2}x^2$

4- For all
$$n \ge 1$$
, we put: $w_n = \sum_{k=1}^{k=n} \left(e^{\frac{n}{n^2 + k^2}} - 1 \right)$

0.25 a) Show that for all
$$n \ge 1$$
, we have: $0 \le w_n - u_n \le \frac{e}{2} \sum_{k=1}^{k=n} \left(\frac{n}{n^2 + k^2} \right)^2$

0.25 b) Show that the function:
$$x \mapsto (1+x^2)^{-2}$$
 is strictly decreasing on [0,1]

0.25 c) Deduce that for all
$$n \ge 1$$
 and for all $k \in \{1, 2, ..., n\}$, we have:

$$\frac{1}{n} \left(1 + \left(\frac{k}{n} \right)^2 \right)^{-2} \le \int_{\frac{k-1}{n}}^{\frac{k}{n}} (1 + x^2)^{-2} dx$$

0.5 Show that for all
$$n \ge 1$$
, we have: $0 \le w_n - u_n \le \frac{e}{2n}$

0.5 b) Deduce that the sequence
$$(w_n)_{n\geq 1}$$
 is convergent and determine its limit.

EXERCISE3: (3.5 points)

Let $m \in \mathbb{C}^*$

Part I: Consider in \mathbb{C} the equation with variable z

$$(E)$$
: $z^2 - (2+i)mz + m^2(1+i) = 0$

0.25 | 1- a) Verify that the discriminant of the equation (E) is
$$\Delta = (im)^2$$

0.5 b) Solve in
$$\mathbb{C}$$
 the equation (E)

2- Let
$$z_1$$
 and z_2 be the solutions of (E)

0.5 Write
$$z_1 z_2$$
 in the exponential form in case where $m = re^{i\theta}$ ($r \in \mathbb{R}_+^*$, $\theta \in \mathbb{R}$)

RS 24E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية)

Part II: The complex plane is attached to the direct orthonormal coordinate system $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$

We put $z_1 = m$ and $z_2 = m(1+i)$

Let M_1 be the point with affix z_1 , M_2 the point with affix z_2 and $M_3(z_3)$ the image of

O by the rotation with center M_2 and angle $\left(-\frac{\pi}{2}\right)$ and $M_4(z_4)$ the image of the point

 M_1 by the homothety with center O and ratio $k (k \in \mathbb{R}^* - \{1\})$

- 0.75 | 1- Calculate z_3 in terms of m and calculate z_4 in terms of m and k
- 0.75 2- Give the algebraic form of $\frac{z_4 z_2}{z_4 z_1} \times \frac{z_3 z_1}{z_3 z_2}$
- 0.75 | 3- Deduce that the points M_1, M_2, M_3 and M_4 are cocyclic if and only if k = -2

EXERCISE4: (3.5 points)

We provide the set \mathbb{C} of complex numbers with the internal law * defined by:

$$\forall (x, x', y, y') \in \mathbb{R}^4$$
; $(x+iy)*(x'+iy') = (xy'+y^5x')+iyy'$

Part I:

- 0.25 | 1- a) Verify that: 1*2i = 2
- 0.25 b) Show that the internal law * is not commutative.
- 0.5 2- Show that the internal law * is associative.
- 0.25 | 3- a) Verify that: 1*(1+2i) = 2
- 0.25 b) Deduce that $(\mathbb{C}, *)$ is not a group.
 - 4- Let *E* be the sub-set of \mathbb{C} defined by $E = \{x + yi / x \in \mathbb{R} \text{ et } y \in \mathbb{R}^*\}$
- 0.25 a) Show that E is stable in $(\mathbb{C}, *)$
- 0.5 b) Show that (E, *) is a non-commutative group.

Part II:

Consider the sub-sets of E defined by: $F = \{yi \mid y \in \mathbb{R}^*\}$ and $G = \{x + i \mid x \in \mathbb{R}\}$

- 0.5 | 1- Show that F is a sub-group of (E, *)
 - 2- Consider the application φ defined from \mathbb{R} to \mathbb{C} by : $(\forall x \in \mathbb{R})$; $\varphi(x) = x + i$
- 0.25 a) Show that: $\varphi(\mathbb{R}) = G$
- 0.25 b) Show that φ is a homomorphism from $(\mathbb{R},+)$ to $(\mathbb{C},*)$
- 0.25 c) Deduce that (G,*) is a commutative group.