| فحة | الصا | |-----|----------| | | 1 | | 5 | <u> </u> | | * | * | | | | # الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2024 -الموضوع - المملكة المفرية وزارة التربية الولمنية الولمنية المفرية المفرية المفرية المفرية المفرية المولمنية المولمن - **Lomos**all- المركز الوطني للتقويم والامتحانات | 4h | مدة
الإنجاز | الرياضيات | المادة | |----|----------------|--|---------------| | 9 | المعامل | شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية) | الشعبة المسلك | **RS 24E** - The duration of the exam is four hours - -The exam consists of 5 independent exercises - The exercises can be treated in the order chosen by the candidate - Exercise1 concerns analysis(6.5 pts) - Exercise2 concerns analysis(3.5 pts) - Exercise3 concerns complex numbers.....(3.5 pts) - Exercise4 concerns algebra(3.5 pts) - Exercise5 concerns arithmetic(3 pts) The use of the calculator is not allowed The use of red color on sheet paper is not permitted **RS 24E** **EXERCISE1**: (6.5 points) Let n be a natural number greater than or equal to 2 Consider the numerical function f_n defined on $[0,+\infty]$ by: $$f_n(0) = 0$$ and $\forall x \in]0, +\infty[$; $f_n(x) = x - x^n \ln x$ And let (C_n) be its curve in an orthonormal coordinate system. - 0.25 | 1-a) Show that f_n is continuous on the right at 0 - 0.75 b) Show that: $\lim_{x \to +\infty} f_n(x) = -\infty$ and $\lim_{x \to +\infty} \frac{f_n(x)}{x} = -\infty$, then interpret graphically the obtained result. - 0.5 Show that f_n is differentiable on the right at the point 0 and that its derivative on the right at the point 0 is equal to 1 - d) Show that f_n differentiable on $]0,+\infty[$ and that: 0.5 $$\forall x \in]0, +\infty[; f_n'(x) = 1 - x^{n-1} - nx^{n-1} \ln x]$$ - 0.5 e) Show that f_n is strictly increasing on [0;1] and strictly decreasing on [1,+ ∞ [- 0.5 | 2-a) Show that for $n \ge 2$, we have: $\forall x \in [0, +\infty[$; $f_{n+1}(x) \le f_n(x)$ - 0.25 b) Deduce the relative position of (C_n) and (C_{n+1}) - 0.5 Show that for $n \ge 2$, there exists a unique real number $\alpha_n \in]1;2[$ such that: $f_n(\alpha_n) = 0$ (We take $\ln 2 = 0,7$) - 0.25 b) Verify that $(\forall n \ge 2)$ $\alpha_{n+1}^n \ln \alpha_{n+1} = 1$ - 0.25 c) Deduce that for $n \ge 2$, $f_n(\alpha_{n+1}) = \alpha_{n+1} 1$ - 0.5 d) Show that the sequence $(\alpha_n)_{n\geq 2}$, thus defined, is strictly decreasing. - 0.25 e) Deduce that the sequence $(\alpha_n)_{n\geq 2}$ is convergent. - 4- We put: $\ell = \lim_{n \to +\infty} \alpha_n$ - 0.25 a) Show that: $1 \le \ell \le 2$ - 0.5 b) Show that for all $n \ge 2$, $n-1 = -\frac{\ln(\ln(\alpha_n))}{\ln(\alpha_n)}$ - 0.25 c) Suppose that $\ell > 1$. Calculate $\lim_{n \to +\infty} \frac{\ln(\ln(\alpha_n))}{\ln(\alpha_n)}$ in terms of ℓ - 0.5 d) Deduce the value of the limit ℓ **RS 24E** الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - الموضوع - الموضوع - الموضوع - الموضوع الرياضيات شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية) **EXERCISE2**: (3.5 points) 0.25 1-a) Calculate the integral: $$\int_{0}^{1} \frac{1}{1+x^{2}} dx$$ 0.5 b) For all $$n \ge 1$$, we put: $u_n = \sum_{k=1}^{k=n} \frac{n}{n^2 + k^2}$. Show that the sequence $(u_n)_{n\geq 1}$ is convergent and determine its limit. 0.25 2- Show that: $$\int_{0}^{1} \frac{1}{(1+x^2)^2} dx \le 1$$ 0.5 3-a) Show that: $$(\forall x \in [0,1])$$; $0 \le e^x - 1 \le e.x$ 0.25 b) Deduce that: $$(\forall x \in [0,1])$$; $0 \le e^x - 1 - x \le \frac{e}{2}x^2$ 4- For all $$n \ge 1$$, we put: $w_n = \sum_{k=1}^{k=n} \left(e^{\frac{n}{n^2 + k^2}} - 1 \right)$ 0.25 a) Show that for all $$n \ge 1$$, we have: $0 \le w_n - u_n \le \frac{e}{2} \sum_{k=1}^{k=n} \left(\frac{n}{n^2 + k^2} \right)^2$ 0.25 b) Show that the function: $$x \mapsto (1+x^2)^{-2}$$ is strictly decreasing on [0,1] 0.25 c) Deduce that for all $$n \ge 1$$ and for all $k \in \{1, 2, ..., n\}$, we have: $$\frac{1}{n} \left(1 + \left(\frac{k}{n} \right)^2 \right)^{-2} \le \int_{\frac{k-1}{n}}^{\frac{k}{n}} (1 + x^2)^{-2} dx$$ 0.5 Show that for all $$n \ge 1$$, we have: $0 \le w_n - u_n \le \frac{e}{2n}$ 0.5 b) Deduce that the sequence $$(w_n)_{n\geq 1}$$ is convergent and determine its limit. **EXERCISE3**: (3.5 points) Let $m \in \mathbb{C}^*$ **Part I:** Consider in \mathbb{C} the equation with variable z $$(E)$$: $z^2 - (2+i)mz + m^2(1+i) = 0$ 0.25 | 1- a) Verify that the discriminant of the equation (E) is $$\Delta = (im)^2$$ 0.5 b) Solve in $$\mathbb{C}$$ the equation (E) 2- Let $$z_1$$ and z_2 be the solutions of (E) 0.5 Write $$z_1 z_2$$ in the exponential form in case where $m = re^{i\theta}$ ($r \in \mathbb{R}_+^*$, $\theta \in \mathbb{R}$) **RS 24E** # الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2024 - الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية) **Part II:** The complex plane is attached to the direct orthonormal coordinate system $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$ We put $z_1 = m$ and $z_2 = m(1+i)$ Let M_1 be the point with affix z_1 , M_2 the point with affix z_2 and $M_3(z_3)$ the image of O by the rotation with center M_2 and angle $\left(-\frac{\pi}{2}\right)$ and $M_4(z_4)$ the image of the point M_1 by the homothety with center O and ratio $k (k \in \mathbb{R}^* - \{1\})$ - 0.75 | 1- Calculate z_3 in terms of m and calculate z_4 in terms of m and k - 0.75 2- Give the algebraic form of $\frac{z_4 z_2}{z_4 z_1} \times \frac{z_3 z_1}{z_3 z_2}$ - 0.75 | 3- Deduce that the points M_1, M_2, M_3 and M_4 are cocyclic if and only if k = -2 ## **EXERCISE4**: (3.5 points) We provide the set \mathbb{C} of complex numbers with the internal law * defined by: $$\forall (x, x', y, y') \in \mathbb{R}^4$$; $(x+iy)*(x'+iy') = (xy'+y^5x')+iyy'$ #### Part I: - 0.25 | 1- a) Verify that: 1*2i = 2 - 0.25 b) Show that the internal law * is not commutative. - 0.5 2- Show that the internal law * is associative. - 0.25 | 3- a) Verify that: 1*(1+2i) = 2 - 0.25 b) Deduce that $(\mathbb{C}, *)$ is not a group. - 4- Let *E* be the sub-set of \mathbb{C} defined by $E = \{x + yi / x \in \mathbb{R} \text{ et } y \in \mathbb{R}^*\}$ - 0.25 a) Show that E is stable in $(\mathbb{C}, *)$ - 0.5 b) Show that (E, *) is a non-commutative group. ### Part II: Consider the sub-sets of E defined by: $F = \{yi \mid y \in \mathbb{R}^*\}$ and $G = \{x + i \mid x \in \mathbb{R}\}$ - 0.5 | 1- Show that F is a sub-group of (E, *) - 2- Consider the application φ defined from \mathbb{R} to \mathbb{C} by : $(\forall x \in \mathbb{R})$; $\varphi(x) = x + i$ - 0.25 a) Show that: $\varphi(\mathbb{R}) = G$ - 0.25 b) Show that φ is a homomorphism from $(\mathbb{R},+)$ to $(\mathbb{C},*)$ - 0.25 c) Deduce that (G,*) is a commutative group.