

الامتحان الوطنى الموحد للبكالوريا الدورة العادية 2024

HOXMART I HEYOEO المملكة المفربية +.E.U.O+ | SOXE & 1.ESO وزارة التربية الولهنية والتعليم الأولير والرياضة في الالله ٨ ٥٥٠١١٤١٥ ٨ ١١٥١٤٨ ٨ ١٨٥٠١٨

- الموضوع -

NS 24E المركز الوطنى للتقويم والامتحانات

4h	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية)	الشعبة المسلك

- The duration of the exam is four hours
- -The exam consists of 5 independent exercises
- The exercises can be treated in the order chosen by the candidate
 - Exercise1 concerns analysis(7.5 pts)
 - Exercise2 concerns analysis(2.5 pts)
 - Exercise3 concerns complex numbers.....(3.5 pts)
 - Exercise4 concerns algebra(3.5 pts)
 - Exercise5 concerns arithmetic(3 pts)

The use of the calculator is not allowed The use of red color on sheet paper is not permitted الصفحة 2

0.5

0.5

NS 24E

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 - الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية)

EXERCISE1: (7.5 points)

Let f be the numerical function defined on the interval $[1,+\infty[$ by:

$$f(1) = \frac{1}{2}$$
 and for all $x \in]1, +\infty[$, $f(x) = \frac{\ln(x)}{x^2 - 1}$

And let (C) be its curve in an orthonormal coordinate system (O, \vec{i}, \vec{j})

- 0.5 1- Show that f is continuous on the right at the point 1
- 0.5 2- Calculate $\lim_{x \to +\infty} f(x)$, then interpret graphiqually the obtained result.
 - 3- a) Let $x \in]1,+\infty[$.

0.25 By putting:
$$t = (x-1)^2$$
, verify that: $\frac{1-x+\ln(x)}{(x-1)^2} = \frac{-\sqrt{t}+\ln(1+\sqrt{t})}{t}$

0.5 b) Show that
$$(\forall t \in]0, +\infty[)$$
, $-\frac{1}{2} < \frac{-\sqrt{t} + \ln(1 + \sqrt{t})}{t} < \frac{-1}{2(1 + \sqrt{t})}$

(you can use the Mean Value Theorem on the interval [0;t])

0.25 c) Deduce that:
$$\lim_{x \to 1^+} \frac{1 - x + \ln(x)}{(x - 1)^2} = -\frac{1}{2}$$

4- a) Show that:
$$\forall x \in]1, +\infty[$$
, $\frac{f(x) - \frac{1}{2}}{x - 1} = -\frac{\ln(x)}{x - 1} \times \frac{1}{2(x + 1)} + \frac{\ln(x) - x + 1}{2(x - 1)^2}$

b) Deduce that f is differentiable on the right at the point 1, then interpret graphically the obtained result.

5- For all
$$x \in [1, +\infty[$$
 we put $I(x) = \int_1^x \frac{t^2 - 1}{t^3} dt$ and $J(x) = \int_1^x \frac{t^2 - 1}{t^2} dt$

0.5 a) Show that: $\forall x \in [1, +\infty[, 0 \le I(x) \le J(x)]$

b) Show that for all
$$x \in [1, +\infty[$$
, $I(x) = \ln(x) - \frac{x^2 - 1}{2x^2}$ and $J(x) = \frac{(x - 1)^2}{x}$

0.5 c) Show that:
$$\forall x \in]1, +\infty[$$
, $f'(x) = \frac{-2}{(x+1)^2} \times \frac{I(x)}{J(x)}$

0.5 d) Deduce that:
$$\forall x \in]1, +\infty[, -\frac{1}{2} \le f'(x) \le 0$$

- 0.25 | 6- a) Set up the table of variation of the function f
- 0.5 b) Plot the curve (C) (We take $\|\vec{i}\| = 1 \text{cm}$ and $\|\vec{j}\| = 2 \text{cm}$)
- 0.5 | 7- Show that the equation f(x) = x 1 admits a unique solution a in]1,2[
 - 8- Let $(a_n)_{n\in\mathbb{N}}$ be the numerical sequence defined by: $a_0 \in [1, +\infty[$ and for all $n \in \mathbb{N}$, $a_{n+1} = 1 + f(a_n)$

NS 24E

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية)

0.5

a) Show that: $(\forall n \in \mathbb{N})$, $|a_{n+1} - a| \le \frac{1}{2} |a_n - a|$

0.5

b) Show by induction: $(\forall n \in \mathbb{N}), |a_n - a| \le \left(\frac{1}{2}\right)^n |a_0 - a|$

0.25

c) Deduce that the sequence $(a_n)_{n\in\mathbb{N}}$ is convergent.

EXERCISE2:(2.5 points)

Let F be the numerical function defined on the interval [0;1] by: $F(x) = \int_0^x e^{t^2} dt$

0.5

0.5

1-a) Show that F is continuous and strictly increasing on [0;1]

b) Deduce that F is a bijection from [0;1] to $[0;\beta]$ where $\beta = \int_0^1 e^{t^2} dt$ 2- F^{-1} denotes the inverse bijection of F

For all
$$n \in \mathbb{N}^*$$
, we put: $S_n = \frac{1}{n} \sum_{k=1}^{k=n} F^{-1} \left(\frac{k}{n} \beta \right)$

0.5

a) Show that the sequence $(S_n)_{n\in\mathbb{N}^*}$ is convergent with limit $\ell = \frac{1}{\beta} \int_0^\beta F^{-1}(t) dt$

0.5

b) Show that $\ell = \frac{1}{\beta} \int_0^1 u \, e^{u^2} du$ (We can use the variable change $u = F^{-1}(t)$)

0.5

c) Deduce that: $\ell = \frac{e-1}{2\beta}$

EXERCISE3: (3.5 points)

The complex plane is attached to the direct orthonormal coordinate system (O, \vec{u}, \vec{v}) Consider in \mathbb{C} the equation with variable z

$$(E_{\alpha}): z^2 - 2iz + \alpha = 0$$
 where $\alpha \in \mathbb{C}$

Part I:

0.25

1-a) Show that the discriminant of the equation (E_{α}) is $\Delta = -4(1+\alpha)$

0.25

b) Determine the set of the values of $\ \alpha$ for which the equation (E_{α}) admits two distinct solutions in $\mathbb C$.

0.5

0.5

2- z_1 and z_2 denote the two solutions of the equation (E_{α}) . Determine $z_1 + z_2$ and $z_1 z_2$

Part II:

Let Ω , $M_{\scriptscriptstyle 1}$ and $M_{\scriptscriptstyle 2}$ be the points with respective affixes α , $z_{\scriptscriptstyle 1}$ and $z_{\scriptscriptstyle 2}$

- 1- Suppose $\alpha = m^2 2m$ where $m \in \mathbb{R}$
- a) Determine z_1 et z_2 in terms of m

NS 24E

- 0.25 b)
- b) Deduce that the points O, M_1 and M_2 are collinear.
 - 2-Suppose that the points O, M_1 and M_2 are non collinear.
- 0.25 a) Show that $\frac{z_1}{z_2}$ is a pure imaginary if and only if $Re(z_1\overline{z_2}) = 0$
- 0.5 b) Show that: $|z_1 z_2|^2 = |z_1 + z_2|^2 4Re(z_1\overline{z_2})$
- 0.25 c) Deduce that $\frac{z_1}{z_2}$ is a pure imaginary if and only if $|z_1 z_2| = 2$
- 0.25 | 3-a) Show that: $(z_1 z_2)^2 = \Delta$
- 0.5 b) Determine the set Γ of the points Ω for which the triangle OM_1M_2 is rectangle at O

EXERCISE4: (3.5 points)

Recall that $(M_2(\mathbb{R}),+,\times)$ is a unitary no commutative ring with zero the matrix

$$O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 and unit the matrix $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Consider in $\mathbb{C} \times \mathbb{C}^*$ the law internal operational T defined by:

$$\forall ((a,b),(c,d)) \in (\mathbb{C} \times \mathbb{C}^*)^2 ; (a,b)T(c,d) = (a\overline{d} + c, bd)$$

 $(\overline{d} \text{ is the conjugate of the } \text{ complex number } d)$

- 0.5 1-a) Verify that $(i,2)T(1,i) = (\mathbf{2},2i)$, then calculate (1,i)T(i,2)
- 0.25 b) Deduce that the law T is not commutative in $\mathbb{C} \times \mathbb{C}^*$
- 0.5 2- Show that T is associative in $\mathbb{C} \times \mathbb{C}^*$
- 0.25 3- Verify that (0,1) is the neutral element of T in $\mathbb{C} \times \mathbb{C}^*$
- 0.5 4-a) Verify that $\forall (a,b) \in \mathbb{C} \times \mathbb{C}^*$; $(a,b)T\left(-\frac{a}{\overline{h}}, \frac{1}{h}\right) = (0,1)$
- 0.5 b) Show that $(\mathbb{C} \times \mathbb{C}^*, T)$ is a non-commutative group.
- 0.5 | 5-a) Show that $\mathbb{R} \times \mathbb{R}^*$ is stable for the law T
- 0.5 b) Show that $\mathbb{R} \times \mathbb{R}^*$ is a sub-group of the group $(\mathbb{C} \times \mathbb{C}^*, T)$

الصفحة		الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 – الموضوع			
$\left \begin{array}{c} 5 \\ 5 \end{array} \right $	NS 24E	- مادة: الرياضيات-			
		شعبة العلوم الرياضية (أ) و (ب) (خيار انجليزية)			
		EXERCISE5 : (3 points) Let p and q be distinct prime numbers and r be a natural number which is prime			
		with p and with q			
1	_	1- a) Show that p divides $r^{p-1}-1$ and that q divides $r^{q-1}-1$			
0.5		b) Deduce that p and q divides $r^{(p-1)(q-1)}-1$			
0.5		c) Show that pq divides $r^{(p-1)(q-1)}-1$			
1		2- Solve in \mathbb{Z} the equation $2024^{192}x \equiv 3$ [221] (We give: $221 = 13 \times 17$)			
	2- 301v	$\frac{\text{c in } \mathbb{Z} \text{ the equation } 2024 x = 3 [221] \text{(we give : } 221 - 13 \times 17\text{)}}{\text{END}}$			
		END			