الصفحة 1 8 		الامتحان الوطني الموحد للبكالوريا الدورة العادية 2024 -الموضوع -		للمملكة للمغربية +هديلة للعضرية بوزارق التربية الولمنية ٨ ٤٥٥١٣٢٨ هل الأولم وللرياضة		
	SS	\$	NS 30E	المركز الوطني للتعويم والامتحانات		
4h	مدة الإنجاز	ياء	الفيزياء والكيه		المادة	
7	المعامل	.) (خيار إنجليزية)) الشعبة المسلك			
	 The use of the non-programmable scientific calculator is allowed. The literal formula must be given before the numerical application and the result must be accompanied by its unit. The exercises can be treated separately according to the choice of the candidate. The subject includes four exercises: one in Chemistry and three in Physics. Exercise 1: Chemistry (7 points) Part 1: Study of an aqueous solution of a carboxylic acid Part 2: Study of a Nickel-Cobalt electrochemical cell Exercise 2: Waves + Nuclear transformations (4 points) Part 1: Study of a diffraction of light Part 2: The radioactivity of the polonium. Exercise 3: Electricity (4 points) Part 1: Study of an RC dipole Part 2: Study of forced oscillations in an RLC series circuit Exercise 4: Mechanics (5 points) Part 1: Motion of a mechanical system Part 2: Motion of an elastic pendulum 					

Exercise 1: Chemistry (7 points)

Part 1 and part 2 are independent

Part 1: Study of an aqueous solution of a carboxylic acid

In a school laboratory, there is a bottle containing a solution (S_0) of a pure carboxylic acid, denoted AH

of general formula $C_n H_{2n+1}$ COOH where n is a natural number.

We want to determine the chemical formula of this carboxylic acid and the pK_A of the pair AH/A⁻ in

order to study its reaction with an aqueous solution of sodium methanoate $Na^{+}_{(aq)}$ +HCOO⁻_(aq).

Given :

- Molar mass: $M(C)=12g.mol^{-1}$; $M(O)=16g.mol^{-1}$; $M(H)=1g.mol^{-1}$.

1-Determination of the $pK_{\rm A}$ of the pair $AH/A^{\rm -}$ and the chemical formula of the acid $\,AH$

We prepare a solution (S_A) of the acid AH by dissolving in a distilled water a mass m = 1,5 g of this pure acid. The volume of the solution obtained is V=500mL. We take a volume V_A =20mL of the solution (S_A) that we titrate it by an aqueous solution (S_B) of sodium hydroxide Na⁺_(aq) + HO⁻_(aq) of molar concentration C_B=3, 4.10⁻² mol.L⁻¹. The pHmetric monitoring allowed obtaining the curve pH=f(V_B) representing the evolution of the pH of the reaction mixture as function of V_B the volume of sodium hydroxide added (Figure 1).

1-1- Write the equation of the reaction of the titration. (0,25pt)

1-2- By using the progress table of the reaction, show that the

expression of the volume V_B is written as : $V_B = \frac{V_{BE} \cdot 10^{pH-pK_A}}{1+10^{pH-pK_A}}$, with V_{BE}

the volume of the sodium hydroxide added at the equivalence point and $0\langle V_B \langle V_{BE} \rangle$. (0,75pt)

1-3- Find out the relationship between V_B and V_{BE} so that the relationship $pH = pK_A$ is verified.

Deduce graphically the value of the pK_A . (0,5pt)

1-4- Determine C_A the molar concentration of the solution (S_A) . (0,5pt)

1-5- Find out the value of n and deduce the chemical formula of the acid AH studied. (0,75pt)

2- Study of the reaction of the acid AH with méthanoate ions HCOO⁻.

We mixture a volume $V_1 = 50 \text{ mL}$ of an aqueous solution of the acid AH of molar concentration

C=1,0.10⁻²mol.L⁻¹ and a volume $V_2 = V_1$ of an aqueous solution of sodium methanoate $Na_{(aq)}^+ + HCOO_{(aq)}^$ of same molar concentration C. we model the occurring transformation by the chemical reaction of equation: $AH_{(aq)} + HCOO_{(aq)}^- \longrightarrow A_{(aq)}^- + HCOOH_{(aq)}^-$

Given:

The ion	Na^+	HCOO ⁻	A
The molar ionic conductivity (mS.m ² .mol ⁻¹)	5,01	5,46	3,58

We neglect the contribution of the ions H_3O^+ and HO^- in the conductivity of the solution. The expression of the conductivity σ of an ionic solution is: $\sigma = \sum_i \lambda_{X_i} \cdot [X_i]$ where $[X_i]$ is the effective molar concentration of the ionic species present in the solution and λ_{X_i} its molar ionic conductivity.

 $\overline{\ }$

8

الصفحة

8

2-1- Show that the expression of the conductivity σ of the reaction mixture at an instant of time t in terms of the progress of the reaction x is written as : σ=52,35 -1,88.10⁴.x with σ expressed in mS.m⁻¹ and x in mol. (0,75pt)
2-2- We measure the conductivity of the reaction mixture at the equilibrium state, we find: σ_{eq} = 50,092 mS.m⁻¹.
2-2-1- Check out that the value of the equilibrium constant K associated to the equation of the reaction

is $K \simeq 0, 1.$ (0,5pt)

2-2-2- Deduce the value of the pK_A' of the pair $HCOOH / HCOO^-$. (0,5pt)

Part 2: study of a nickel - cobalt electrochemical cell

The electric battery is an electrochemical dispositive that produces the electricity by converting a part of the chemical energy to electric energy through the oxidation-reduction reactions.

We consist the nickel – cobalt electrochemical cell, by immersing a blade of nickel in a beaker containing a volume $V = 100 \, mL$ of an aqueous solution of nickel (II) sulfate: $Ni_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ of initial molar concentration $C_1 = \left[Ni^{2+}\right]_i = 10^{-2} \, mol.L^{-1}$, and a blade of cobalt in another beaker containing a volume $V = 100 \, mL$ of an aqueous solution of cobalt (II) sulfate: $Co_{(aq)}^{2+} + SO_{4(aq)}^{2-}$ of initial molar concentration $C_2 = \left[Co^{2+}\right]_i$. A salt bridge links the two solutions.

We mount in series with this electrochemical cell a resistor, an ammeter and a switch. At an instant t=0 we close the circuit. An electric current of intensity I, considered as constant, flows in the circuit. **Given :**

-Molar mass of the cobalt: $M(Co) = 58,9 g.mol^{-1}$;

- The faraday Constant: $1F = 9,65.10^4 C.mol^{-1}$.

-The equilibrium constant associated to the equation of

the reaction:
$$\operatorname{Co}_{(\operatorname{aq})}^{2+} + \operatorname{Ni}_{(\operatorname{s})} \stackrel{(1)}{\underset{(2)}{\leftarrow}} \operatorname{Ni}^{2+}_{(\operatorname{aq})} + \operatorname{Co}_{(\operatorname{s})} \operatorname{is} Q_{r.e} = K$$

at 25°C.

The curve of figure 2 represents the temporal evolution of the quotient of reaction Q_r .

1- By using the curve $\boldsymbol{Q}_{\boldsymbol{r}}(t)$, choose the correct

b- The electrode of the cobalt is the cathode.

statement, from the following statements: (0,5pt)

a- The direction of spontaneous evolution of a chemical system consisting the electrochemical cell is the direction (1) of the equation of the reaction.

- c- The diagram of the electrochemical cell studied is: \bigcirc Ni/Ni²⁺//Co²⁺/Co \oplus .
- d- The conventional direction of the electric current outside the electrochemical cell is from the electrode of nickel to the electrode of cobalt.

2- Determine *C*₂. (**0,5pt**)

3-Find out the expression of the intensity *I* of the electric current in terms of *K*, *F*, *C*₁, *C*₂, *V* and t_{eq} , with t_{eq} the instant of time when the equilibrium of the chemical system is reached. Check out that $I \simeq 0.1A$. (0,75pt) 8

4-Compute Δm the variation of the mass of the electrode of cobalt between the instants t=0 and $t = t_{ea}$.(0,75pt)

Exercise 2 : Waves + Nuclear transformations (4points)

Part 1: Study of the diffraction of the light.

The phenomenon of diffraction allows highlighting the wave aspect of the light.

A source of laser producing a monochromatic light of wavelength $\lambda = 750$ nm lights up a circular diaphragm of an adjusted diameter d. We observe, on the screen placed at the distance D from the diaphragm, a circular light spot of a diameter L surrounded by a dark and light alternatives rings. (Figure 1) We vary d, and we denote the value of corresponding L.

The curve of figure 2 represents the curve $L = f(\frac{1}{r})$.

Given :

- The distance diaphragm-screen: D = 1,50 m

- The law associated of the diffraction with the circular

diaphragm has the expression: $\theta = \frac{\alpha \cdot \lambda}{d}$ with θ the angular

deviation expressed in radian and α a coefficient of correction linked to the circular shape of the slit.

1- Show in the case of small angular deviations, where

$$\tan(\theta) \simeq \theta(\text{rad}) \text{ that: } L = \frac{2\alpha.\lambda.D}{d}. (0,5\text{pt})$$

2-Verify that $\alpha = 1, 22$. (**0,5pt**)

3- We replace the diaphragm with an opaque plate pierced with a hole of an unknown diameter d', the diameter of the central spot obtained is : L'=1,5cm.

3-1- Determine *d* '. (**0.5pts**)

3-2- We replace the source of laser with a source of white light, we observe on the screen, a central iridescent spot consisted with a white central part of diameter L_B . Knowing that the wavelength λ of visible spectrum in the vacuum is $\lambda_1=0,4\mu m \langle \lambda \langle \lambda_2=0,8\mu m \rangle$.

3-2-1- Indicate between λ_1 and λ_2 , the wavelength corresponding to the red radiation. (0,25pt)

3-2-2- Determine L_B. (0,75pt)

Part 2: The radioactivity of the polonium.

The nucleus of polonium ${}^{210}_{84}Po$ spontaneously decays into a nucleus of

lead $\frac{206}{82}Pb$ with emission of a particle α .

In this part, we propose to study the energy balance of this transformation and the evolution during time of this transformation. On the diagram of figure 1 are placed the values of the mass of the following systems: (the nucleus of polonium 210); (separated nucleons) ; (the nucleus f lead $206 + \alpha$).

m(u)

211,7030

209,9347

209,9315

84. $^{1}_{1}p$ + 126. $^{1}_{0}n$

²¹⁰₈₄Po

 $^{206}_{82}Pb + \alpha$

Figure 1

Given :

- The molar mass of polonium 210 : M=210g.mol⁻¹;
- Atomic mass unit: 1u=931,5MeV.c⁻².

NS 30E

- Avogadro constant: $N_A = 6,02.10^{23} \text{mol}^{-1}$.
- 1- Choose the correct statement from the following statements : (0,25pt)
- **a** The α decay corresponds to the emission of a neutron.
- **b-** The α *decay* concerns light nuclei.

c- The half-life $t_{1/2}$ of a sample is the duration after which 63% of the sample disintegrated.

- d- The binding energy per nucleon of lead 206 is greater than that of polonium 210.
- **2-** By exploiting the diagram of figure 1:
- **2-1-** Compute, in MeV/nucleon, the binding energy per nucleon of the nucleus $^{210}_{84}$ Po. (0,25pt)

2-2- Compute, in MeV, the energy $|\Delta E|$ released by the disintegration of a mass m=1mg of polonium 210. (0,25pt)

3- We denote by N_D the number of nuclei of polonium disintegrated at an instant *t* and N_0 the number of nuclei of polonium 210 contained in the sample at *t* = 0. The curve of figure 2 represents the

variations of $\frac{N_D}{N_0}$ as function of time.

3-1- By exploiting the curve of figure 2, determine in day The half-life $t_{1/2}$ of the polonium 210. (**0,25pt**)

3-2- Let t_1 the instant at which we have: $\frac{N_D}{N} = 3$, with N the

number of nuclei of the polonium remaining at the same instant. Find out in day the value of t_1 . (0,5pt)

Exercise 3 : Electricity (4 points)

Part 1 and part 2 are independent

This exercise aims to study:

- > The response of the RC dipole to a step of voltage.
- Forced oscillations in RLC series circuit.

Part1: Study of RC dipole

We perform the electric circuit of figure 1 which consists of:

- An ideal generator of voltage of e.m.f E;
- A resistor of resistance R_0 ;
- Two capacitors (C_1) and (C_2) without initial charge, respectively

of capacitances $C_1 = 5\mu F$ and $C_2 \rangle C_1$;

- A switch K.

We close the switch K at an instant t = 0,

1-1- Express u_1 the voltage between terminals of (C_1) in terms of

 C_1, C_2 and u_2 the voltage between terminals of (C_2) . (0,25pt)

NS 30E

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2024 – الموضوع - مادة: الفيزياء والكيمياء-شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)

1-2- Show that the differential equation verified by u_2 is written as $: u_2 + \frac{R_0 \cdot C_1 \cdot C_2}{C_1 + C_2} \cdot \frac{du_2}{dt} = \frac{C_1 \cdot E}{C_1 + C_2} \cdot (0,5pt)$

1-3- Knowing that solution of differential equation is written as: $u_2(t)=A(1-e^{-\alpha t})$

Find out the expression of the constant *A* and that of α in terms of the parameters of the circuit. (0,5pt)

2- The curves of figure 2 represent the evolution during the time of voltages u_1 , u_2 and u_{R_0} the voltage between terminals of the resistor.

(T) represents the tangent of the curve 3 at the point of abscise t = 0.

2-1-Associate the voltage $u_2(t)$ with the corresponding curve. (0,25pt)

2-2- Determine the value of C_2 and that of R_0 . (0,5pt)

2-3- Calculate *Ee* the total electric energy stored in both capacitors when the steady state is established. (0,25pt)

Part 2: Study of forced oscillations in RLC series circuit

We perform the electric circuit of figure 3, which consists:

- A low frequency generator (GBF), which delivers a sinusoidal alternating voltage of a constant frequency N and a constant maximal voltage U_m ;

- A capacitor of capacitance $C_{_{o}}{=}10\mu F\,$;

- An inductor (b) of inductance L=86mH and of resistance r;

- A resistor of resistance R=20 Ω .

The generator applies a voltage $u(t)=U_m.cos(2.\pi.N.t+\phi)$, an electric current of intensity

 $i(t)=I_m.cos(2.\pi.N.t)$ flows in the circuit.

We visualize, with the help of an adequate computing system, the voltage $u_R(t)$ between the terminals

of the resistor and the voltage u(t) between the terminals of the generator.

We obtain the oscillogram represented in figure 4.

1- Determine the value of ϕ and that of the impedance *z* of the circuit.(0.5pt)

2- Compute the average power P dissipated by Joule effect in the circuit and deduce the value of r. (**0,5pt**)

3- To obtain the electric resonance, we mount a capacitor of capacitance C with capacitor of the capacitance $C_{_{\rm o}}$.

3-1- Determine the value of C. We take $\pi^2 = 10$. (0,5pt)

3-2- Compute the intensity of the effective current in the circuit.(**0,25pt**)

8

Exercise 4 : Mechanics (5 points)

Part 1 and part 2 are independent

Part 1: Motion of mechanical system

We consider a pulley (P) of radius r = 5cm susceptible to rotate in a vertical plane around an horizontal fixed axis (Δ) passing through its center I and whose the moment of inertia about this axis is J_{Δ} .

We wrap an inextensible wire of negligible mass around the pulley (P), on the other end of the wire is attached a solid (S) of mass m = 100g and of center of inertia G. During the motion, the wire does not slip on the pulley (figure 1).

We consider a point M on the circumference of the pulley.

The point M initially starts from the position M_0 belonging on the vertical line

passing through point I and the center of inertia G of the solid (S) starts from a

position of coordinate z=0 in the frame of reference (O, \vec{k}) .

We locate, at any instant of time, the position of the center of inertia G by the z coordinate and the position of the point M by the angular displacement

 $\theta = (\overline{IM}_0, \overline{IM}).$

We take the gravitational field strength $g=10m.s^{-2}$

1- We neglect all frictions. The curve of figure (2) represents the evolution of the angular velocity $\dot{\theta}$ of the pulley as function of time.

1-1- Determine, by justifying your answer, the nature of motion of

the pulley (P) and calculate its angular acceleration θ . (0,5 pt)

1-2- At the instant $t_1 = 3s$, compute the value of the tangential

acceleration a_t and that of normal acceleration a_n of the motion of M. (0,5 pt)

1-3- By using a dynamic study, show that $J_{\Delta}=10^{-3}$ kg.m². (0,5 pt)

2- At the instant $t_1 = 3s$ the wire is cut and the solid (S) continues its fall.

We consider that the frictional fluids force applied by air is written as: $\vec{f} = -\mu v^2 \vec{k}$ with μ is the coefficient of friction and v the velocity of G.

We neglect the Archimedes' force in front of other forces.

2-1- Compute the velocity of (S) at the instant $t_1 = 3s$.(0,25 pt)

2-2- Establish the differential equation verified by the velocity v when $t \ge t_1$ (**0,25 pt**)

2-3- The curve of figure 3 represents the variations of $\frac{dv}{dt}$ as function of v^2 .

Determine the value of the terminal velocity V_L of the solid (S), and that of the coefficient μ . (0,5pt)

8

Part 2 : Motion of an elastic pendulum.

The elastic pendulum is a mechanical system performing an oscillating motion around its rest position.

This part aims to determine some quantities of this oscillator. The pendulum studied consists of a solid (S), of center of inertia G and of mass m = 100g, which is attached to the end of a spring with non-contiguous turns, of a negligible mass and spring constant K. We fix the other end of the spring to a fixed stand. The solid (S) slides without friction on the inclined plane at an angle $\alpha = 30^{\circ}$ to the horizontal plane.

We study the motion of the center of inertia G of the solid in

frame of reference $R(O, \vec{i}, \vec{j})$ linked to the earth assumed Galilean.

We locate the position of G at an instant t by the displacement x on the x-axis $(0, \vec{i})$.

At the rest position, the displacement x of G is zero in the frame of reference (figure 4).

Given:

- The intensity of the gravitational acceleration: $g = 10 \text{m.s}^{-2}$;

- We take
$$\pi^2 \simeq 10$$

1- Show that the expression of the extension Δl_0 of the spring at the rest position is written as :

$$\Delta l_0 = -\frac{\text{mg.sin}(\alpha)}{K} \cdot (0,25\text{pt})$$

2- We displace (S) from its rest position, and we release it at

an instant of date t = 0 with an initial velocity $\overrightarrow{V_0} = V_0 \vec{i}$.

The curve of figure 5 represents the evolution during time of the component v_x of the velocity vector of G.

2-1- Applying the Newton's second law, Establish the differential equation of the motion verified by the displacement x of G. (**0,5pt**)

2-2- The solution of the differential equation is written as:

$$x(t) = X_m . \cos\left(\frac{2\pi}{T_0}t + \varphi\right)$$
, with T_0 the natural period of the oscillator.

Find out the value of X_m , of ϕ and that of K. (0,75pt)

2-3- Deduce the vectorial expression of the resultant of the forces applied to (S) as function of time. (0,25pt) **2-4-** We choose as reference level the elastic potential energy (Epe = 0) when the spring is not deformed and as reference level of the gravitational potential energy (Epp = 0) the horizontal plan passes through G at the rest position.

2-4-1- Show that the expression of the mechanical energy of the oscillating system is written as:

$$E_{m} = \frac{1}{2}m\dot{x}^{2} + \frac{1}{2}K(x^{2} + \Delta l_{0}^{2}). \quad (0,5pt)$$

2-4-2- Compute the value of E_m .(0,25pt)

<u>مفحة</u> 4 *		الامتحان الوطني الموحد للبكالوريا المسالك الدولية الدورة العادية 2024	+، XMASE I NEYOSO +، E، Lu, OF I 30 XES ، I. E30 A 300 MEA ، EXLLOS A HIBH في والامتحاذات	المملكة المغربية وزارة التربية الوتصنية والتعليم الأولو والرياضة المركز الوتصنو للتقو
	عناصر الإجابة معناصر الإجابة			R 30E
4h	مدة الإنجاز	الفيزياء والكيمياء		المادة
7	المعامل	عبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)		الشعبة أو المسلك

	Exercise 1 : Chemistry (7 points)						
	Question	Answers	Marking	Question reference in the framework			
			scale				
		Equation of titration reaction with	0.25	Write the equation of titration reaction (use only			
	1-1	one arrow	0,23	one arrow).			
				-Define the final progress rate of a reaction, and			
		Demonstration	0,75	determine it using experimental data.			
	1-2			-Determine and exploit the point of equivalence.			
				-Write and use the expression of the acid			
		$V - \frac{V_{Be}}{V}$	0,25	dissociation constant K_A associated with the			
	1-3	$v_{\rm B} = \frac{1}{2}$		reaction of an acid with water.			
		$pK_{A} = 4,8$	0,25	- Justify the choice of a suitable indicator to			
rt 1				determine the equivalence.			
Pa	1-4	$C_A = 3, 4.10^{-2} \text{ mol.L}^{-1}$.	0,5	- Give and use the expression of the reaction			
				quotient Q_r through the reaction equation			
	1-5	n = 3	0,5	Know that the ionic product of water K _w , is the equilibrium constant associated with the equation of the reaction of water autoprotolysi			
		C ₃ H ₇ COOH	0,25				
	2-1	Demonstration	0,75	 (self-ionization of water). -Determine the nature of aqueous solution (acid, basic or neutral) based on its pH value. -Determine the pH for an aqueous solution. 			
	2.2.1	Verification	0.5				
	2-2-1		0,0				
	2-2-2	$pK'_{A} = 3,8$	0,5				
	1	-d-	0,5	- Draw a cell diagram / diagram of an			
				-Establish the relationship between the amount			
		Method	0,25	of substance of chemical specie produced or			
	2	$C = 0.2 \text{mol } \text{I}^{-1}$		consumed, the current intensity and the			
		$C_2 = 0, 21101.L$	0,25	operating duration of a battery. Use this			
rt 2		$2EV.(C_{1}-KC_{2})$	0.5	(quantity of charge, progress of the reaction.			
Pai	3	$I = \frac{1}{(1+K)t};$	-)-	.change of the mass)			
	5	$I \sim 0.1 \Lambda$	0,25				
		$\Lambda m \sim -46.7 mg$	0.75				
		<u></u>	0,15				
	4						
L	1						

4

	Exercise 2 : waves + Nuclear transformations (4 points)					
	Question	Answers	Marking	Question reference in the framework		
			scale			
	1	Demonstration	0,5	- Know that light has a wave aspect, based on the diffraction		
	2	Verification	0,5	-Know the influence of the size of the slit (opening) or of the		
	3-1-	Method	0,25	obstacle on the diffraction phenomenon		
		d'=1,83.10 ⁻⁴ m	0,25	- Exploit a document or a diffraction pattern in the case of light waves.		
	3-2-1	$\lambda_2 = 0.8 \mu m$	0,25	-Know (Recall) and exploit the relationship: $\lambda = c / \nu$. -Know the boundaries of wavelengths and their colours for the visible spectrum in the vacuum.		
rt]						
Pa	3-2-2	Method	0,5	- Know the frequency of a monochromatic radiation does not		
		$L_{\rm B} = 8.10^{-3} {\rm m}$	0,25	- Know that the transparent media are more or less dispersive.		
				- Know (Recall) and exploit the relationship $n= \ {c\over v}$.		
	1	d	0,25	Define a radioactive nucleusKnow and exploit the two laws of conservation.		
	2-1	7,83MeV/nucleon	0,25	-Define the radioactivity α , β^{\dagger} , β^{\dagger} and the γ -radiation.		
				-Write the equation of a nuclear reaction by applying the two conservation laws		
	2-2	$ \Delta E = 8,54.10^{18} \mathrm{MeV}$	0,25	-Recognise the type of radioactivity using the equation of a nuclear reaction.		
	2 1	120	0.25	-Know and exploit the law of the radioactive decay, and exploit its		
7	5-1	$t_{1/2} = 138$ jour	0,23	- Know that 1Bq is equal to one decay per second.		
Part	3-2	$t_1 = 276 jour$	0,5	-Define the time constant τ and the half-life $t_{1/2}$.		
				-Exploit the relationships between τ , λ and $\mathbf{t}_{_{1/2}}$.		
				 Define and calculate the mass defect and the binding energy. Define and calculate the binding energy per nucleon and exploit it. Use different units of mass, energy and the relationships between their units. Exploit the binding energy per nucleon curve (Aston curve) to 		
				Identify the most stable nucleus. -Know the relationship of the mass-energy equivalence; and calculate the energy of mass.		

4

3

Exercise 3 : Electricity (4 points)						
	Question	Answers	Marking	Question reference in the framework		
			scale			
Part 1	1-1	$\mathbf{u}_1 = \frac{\mathbf{C}_2}{\mathbf{C}_1} \cdot \mathbf{u}_2$	0,25	- Know and exploit the relationship $i = \frac{dq}{dt}$ for a capacitor in receiver convention.		
	1-2	Demonstration	0,5	-Know and exploit the relationship $q = C.u.$ -Know the capacitance of a capacitor, its unit F et ses sous multiples and their submultiples μF , nF et pF .		
	1-3	$A = \frac{C_{1} \cdot E}{C_{1} + C_{2}},$ $\alpha = \frac{C_{1} + C_{2}}{R_{0} \cdot C_{1} \cdot C_{2}}$	0,25	 sous multiples and their submultiples μF, nF et pF -Determine the capacitance of a capacitor graphically or by calculation. - Know the capacitance of the equivalent capacitor in series or in parallel assemblies; and recall the interest of each one. - Find out the differential equation and verify its solution when theRC dipole is submitted to a step voltage. 		
	2-1	(2) corresponds to u_2	0,25	- Determine the voltage expression $\mathcal{U}_C(t)$ between cpacitor terminals when the RC C ut between capacitor terminals when the RC dipole is submitted to a step		
	2-2	$C_2 = 10\mu F;$ $R_0 = 120\Omega$	0,25 0,25	voltage, and deduce both the expression of the intensi current in the circuit and the capacitor charge		
	2-3	$Ee = 2, 4.10^{-4} J$	0,25			
	1	$\varphi = \frac{\pi}{4}$ $Z = 40\Omega$	0,25 0,25	Know the role of the driver and the resonating system. -Know and exploit the expressio $ \phi = \frac{2.\pi.\tau}{T}$ of the phase of physical quantity relative to another.		
rt 2	2	P = 0,318W r = 8,26Q	0,25 0,25	of a circuit. - Know the unit of the impedance (Ω) .		
Pa	3-1	method $C \simeq 26, 6\mu F$	0,25 0,25	 Recognise the electric resonance phenomenon and its characteristics. Know the instantaneous power in the alternating sinusoidal state. Find out and exploit the average power expression P = U.I.cosφ 		
	3-2	I = 0,15A	0,25	- Know the power factor.		

4

4

	Exercise 4 : Mechanics (5 points)							
	Question	Answers	Marking	Question reference in the framework				
			scale					
	1-1	M.R.U.V; $\ddot{\theta} = 40 \text{rad.s}^{-2}$	0,25	 Know the angular acceleration expression and its unit. Know and exploit the expressions of the two components a_N and a_T in terms of angular quantities. Know and apply the fundamental relationship of dynamics in the 				
	1.2	- 2	0.25	case of rotation around a fixed axis in order to establish the differential equation of the motion, and solve it. - Know the unit of the moment of inertia.				
	1-2	$a_t = 2m.s^{-2}$	0,25	- Know and exploit the characteristics of a uniformly varied rotational motion and its parametric equations				
Part 1		$a_n = 845 \text{m.s}^{-2}$	0,25	 Apply Newton's second law and the fundamental relationship of dynamics on a mechanical system consisting of two solids, one in straight translational motion and the other in rotational motion, to establish the differential equation and to determine kinetic and dynamic quantities. Exploit the curve v=f(t) to determine: * the terminal speed; * the characteristic time τ; * the initial state and the steady state Apply Newton's second law to find out the differential equation of 				
	1-3	Demonstration	0,5					
	2-1	$v(t_1) = 6,5 \text{m.s}^{-1}$	0,25	a solid's centre of inertia motion in frictional vertical fall. - Know and apply the Euler's method to solve approximately differential equation				
	2-2	Method	0,25	differential equation				
	2-3	$V_{\rm L} = 10 {\rm m.s}^{-1}$	0,25					
		$\mu = 10^{-2}$ (S.I)	0,25					
	1	Demonstration	0.25	-Know the characteristics of the restoring force exerted by a sprin on a solid in motion. -Exploit the curves: $x_{-}(t)$, $V_{-}(t)$ and $a_{-}(t)$.				
	2-1	$\ddot{x} + \frac{K}{m}x = 0$	0,5	-Apply Newton's second law to the oscillating system (solid-spring) to establish the differential equation of motion and verify its solution when the oscillating system vibrates in the following situations: horizontal, inclined or vertical.				
	2-2	$X_m = 2cm$	0.25	spring): write the equations: $x_{C}(t)$, X and X and exploit them.				
2		$\varphi = -\frac{\pi}{6}$	0.25	Know the meaning of the physical quantities involved in the expression of the parametric equation of the oscillating system (solid-spring) and determine them using the initial conditions.				
Part		$K = 25 N.m^{-1}$	0.25	Establish the expression of the natural period of the oscillating system (solid-spring).				
	2-3	$\sum \vec{F}_{ext} = -0.5\cos(5\pi t - \frac{\pi}{6}).\vec{i}$	0,25	Know and exploit both the expression of the natural period and that of the natural frequency of the oscillating system (solid-spring) Know and exploit the expression of the elastic potential energy. Know and exploit the expression of the mechanical energy of a solid-spring system .				
	2-4-1	Demonstration	0,5	-Exploit the conservation and the non-conservation of the mechanical energy of a solid-spring system .				
	2-4-2	E _m =10mJ	0,25					