El Yacoubi Khalid

Chimie (7pts)

Toutes les solutions sont prises à 25°c, et $K_e=10^{-14}$.

Les amines sont des composés organiques qui se caractérisent par des solutions aqueuses basique. On s'intéresse à l'étude d'une solution aqueuse d'une amine A de formule $C_2H_5NH_2$.

On prépare une solution S_{θ} de cette amine de concentration $C_{\theta}=2.10^{-2} mol. L^{-1}$ et de $pH_0=11,55 \text{ à } 25^{\circ}\text{c.}$

1.

1

0.5

1

1,5

- 1.1. Ecrire l'équation de réaction de l'amine A avec l'eau, et dresser le tableau d'avancement pour un volume V.
- 1.2. Calculer le taux d'avancement final de la réaction. Conclure.
- 1.3. Calculer la valeur de pK_A du couple acide/base de l'amine A.
- 1.4. On dilue la solution S_{θ} , pour obtenir une solution S_{1} de concentration $C_1=10^{-2}\ mol.L^{-1}$. En négligeant la dissolution de la base avec l'eau, montrer que le pH de la solution S_1 peut s'écrire sous la forme : $pH_1 = 7 + \frac{1}{2}(pK_A + Log(C_1))$.

Calculer pH_{1} .

courbe de la figure -5.

- 2. On prend $V_1=10mL$ de la solution S_1 , et on procède au dosage avec une solution chlorhydrique $(H_3O_{aq}^+ + Cl_{aq}^-)$ de concentration $C_2=10^{-2} mol.L^{-1}$. aqueuse d'acide L'évolution de la valeur de pH du mélange au cours du dosage, est représentée par la
 - 2.1. Ecrire l'équation de réaction du dosage, et calculer sa constante d'équilibre. Que peut-on dire de la nature de cette réaction?
 - 2.2. Déterminer les coordonnées du point d'équivalence, puis vérifier la valeur de la concentration C_1 .
 - 2.3. Calculer les concentrations de l'amine A et de son acide conjugué lorsqu'on a versé un volume V₂=16ml de la solution titrante. En déduire le pourcentage de chacun.

0,75

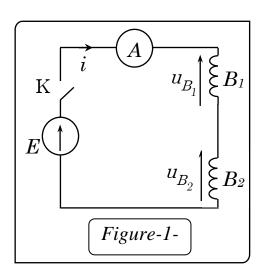
0,75

1,5

Physique I (7 p)

On réalise le circuit électrique représenté dans la figure-1- comportant :

- Un générateur de force électromotrice E.
- Une bobine d'inductance L_1 et de résistance interne r_1 .
- Une bobine d'inductance L_2 et de résistance interne r_2 .
- Un ampèremètre et un interrupteur K.
 On ferme K à t=0.



I.

0.5

1

0,5

0,5

1

|0,75|

0,75

0,5

1,5

1. Montrer que l'équation différentielle vérifié par l'intensité du courant i(t) s'écrit sous la forme : $i+\tau\frac{di}{dt}=\alpha$

Avec τ et α , des constantes dont on déterminera les expressions.

2. La solution de cette équation s'écrit sous la forme : $i(t) = Ae^{-\lambda t} + B$. En utilisant les conditions initiales et les caractéristiques du régime permanant, trouver les expressions des constantes A et B.

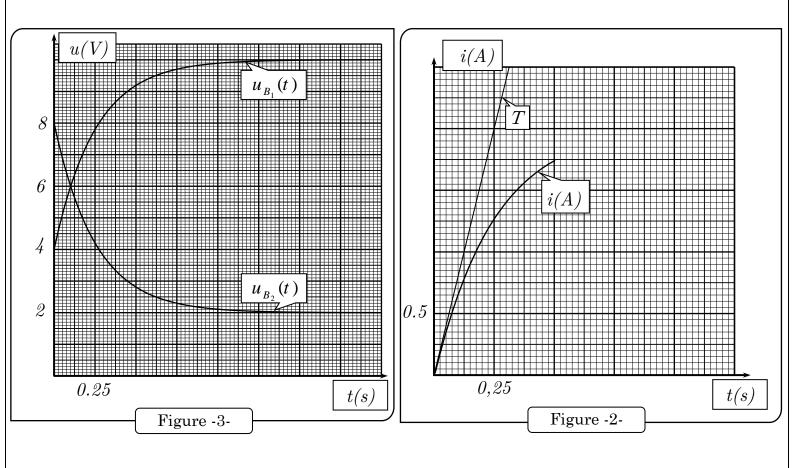
II. La courbe de la figure -2 montre les variations de l'intensité du courant i(t), et la figure -3, celles des tensions $u_{B_1}(t)$ et $u_{B_9}(t)$ aux bornes des bobines.

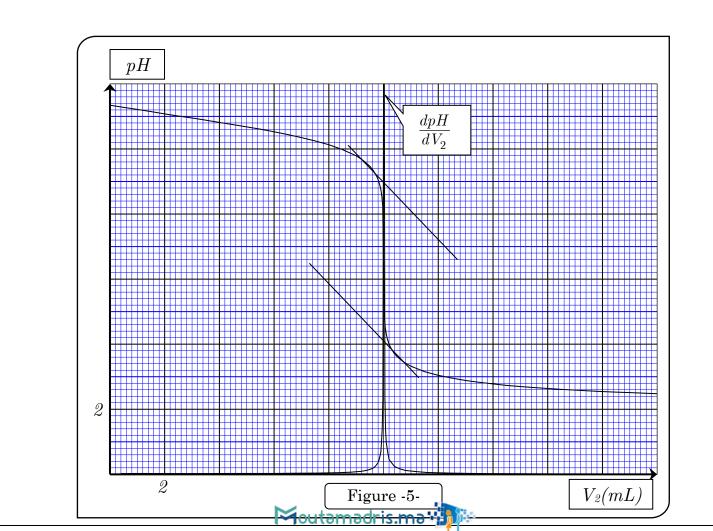
- 1. Montrer que E=12V.
- 2. Trouver l'expression de $\frac{di}{dt}(t=0)$ à t=0 en fonction de E, L_1 , et L_2 .
- 3. La droite T dans la figure-2, représente la tangente à la courbe i(t) à t=0. Trouver graphiquement la valeur de $\frac{di}{dt}(t=0)$, et en déduire la valeur de L_1+L_2 .
- 4. Montrer que $u_{B_1}(t=0) = \frac{L_1}{L_1 + L_2}E$ et $u_{B_2}(t=0) = \frac{L_2}{L_1 + L_2}E$.

En utilisant les courbes de la figures -3, trouver les valeurs de L₁ et L₂.

- 5. Montrer qu'en régime permanant, les tensions $u_{B_1}(\infty)$ et $u_{B_2}(\infty)$ ont pour expressions : $u_{B_1}(\infty) = \frac{r_1}{r_1 + r_2} E$ et $u_{B_2}(\infty) = \frac{r_2}{r_1 + r_2} E$
- 6. En régime permanant, l'ampèremètre affiche la valeur 2A. Calculer les valeurs de r_1 et r_2 .
- 7. L'expression de la tensions $u_{B_1}(t)$ s'écrit sous la forme : $u_{B_1}(t) = C + De^{-\frac{t}{\tau}}$. Trouver les expressions des deux constante C et D.

1 rouver les expressions of





Physique II (6 p)

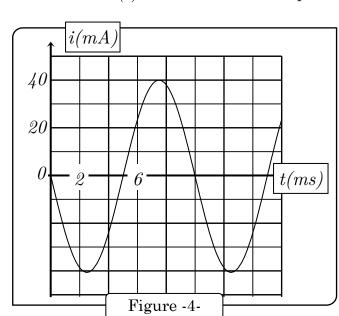
On charge complètement un condensateur de capacité $C=5.\mu F$ avec une tension E, puis on le branche à une bobine d'inductance L et de résistance interne négligeable. La courbe de la figure-4 représente les variations du courant i(t) en fonction du temps.

- 1. Etablir l'équation différentielle vérifiée par le courant i(t).
- 2. La solution de cette équation différentielle s'écrit sous la forme :

$$i(t) = I_{\scriptscriptstyle m} cosiggl(rac{2\pi}{T_{\scriptscriptstyle 0}}t + oldsymbol{arphi}iggr)$$

Déterminer les valeurs de Im et T_0 .

- 3. En déduire la valeur de L.
- 4. En se basant sur les conditions initiales,



Déterminer la valeur de ϕ , puis trouver l'expression de E en fonction de I_m , C et L. Calculer sa valeur.

- 5. En déduire l'expression de la tension $u_{\mathcal{C}}(t)$ aux bornes du condensateur.
- 6. Montrer que l'énergie totale emmagasinée dans le circuit s'écrit sous la forme :

$$\mathcal{E}_{T}(t) = \frac{1}{2}LI_{m}^{2} = \frac{1}{2}CE^{2}$$

7. Montrer que l'énergie du condensateur et celle de la bobine sont égales, aux instants t, tel que : $t = \frac{T_0}{8}(2k+1)$.

0.5

1

0.5

1

 $\frac{1}{0,5}$

1,5