فيما يلي المستوى منسوب لمعلم متعامد ممنظم
$D(-6 ;-3)$ نعتبر النقط : $\quad C(0 ; 2)$ و $A(-4 ; 0)$ و $A(2 ; 5)$ $\overrightarrow{C D}$,

2-
3- أنشـئ النقط السابقة في معلم متعامد ممنظم (

تمرين 4
$C(-1 ; 4)$ نعتبر النقط : $A(0 ; 1)$ و $\quad B(0)$ 1- احسب $A C$ و $A B C$ و
2- بين أن المثلث ABC قائم الزاوية في النقطة AB

$$
A B=\sqrt{\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}}=\sqrt{(-1-(-2 \sqrt{3}))^{2}+(-2-\sqrt{3})^{2}}=\sqrt{(2 \sqrt{3}-1)^{2}+(2+\sqrt{3})^{2}}
$$

$$
A B=\sqrt{4 \times 3-2 \times 2 \sqrt{3}+1+4+2 \times 2 \times \sqrt{3}+3}=\sqrt{12-4 \sqrt{3}+1+4+4 \sqrt{3}+3}=\sqrt{20}
$$

$$
B C=\sqrt{\left(x_{C}-x_{B}\right)^{2}+\left(y_{C}-y_{B}\right)^{2}}=\sqrt{(1-(-1))^{2}+(2-(-2))^{2}}=\sqrt{(2)^{2}+(4)^{2}}=\sqrt{4+16}=\sqrt{20},
$$

$$
A C=\sqrt{\left(x_{C}-x_{A}\right)^{2}+\left(y_{C}-y_{A}\right)^{2}}=\sqrt{(1-(-2 \sqrt{3}))^{2}+(2-\sqrt{3})^{2}}=\sqrt{(1+2 \sqrt{3})^{2}+(2-\sqrt{3})^{2}}
$$

$$
A C=\sqrt{1+4 \sqrt{3}+12+4-4 \sqrt{3}+3}=\sqrt{20}
$$

إذن : AB=BC=AC ، بالتالي المثلث ABC متساوي الأضلاع
范

تمرين
|l($A(-1 ; 3)$

$\overrightarrow{D C}\left(x_{C}-x_{D}, y_{C}-y_{D}\right) \quad \overrightarrow{A B}\left(x_{B}-x_{A}, y_{B}-y_{A}\right)$
$\overrightarrow{D C}(0-a, 3-b) \quad, \quad \overrightarrow{A B}(2-(-1),-6-3) \quad: \quad$ و
$\overrightarrow{D C}(-a, 3-b) \quad \overrightarrow{A B}(3,-9)$
$-b=-9-3$
$-b=-12$, \quad منه $a=-3 \quad$ إذن
$b=12$
$\overrightarrow{A B}=\overrightarrow{C D}: \quad \overrightarrow{A B}=\overrightarrow{D C}:$ م $A B C D \leftarrow{ }_{\text {: }}^{\text {: }}$

$$
\begin{aligned}
& y_{B}=\frac{y_{A}+y_{K}}{2} \quad x_{B}=\frac{x_{A}+x_{K}}{2} \\
& -6=\frac{3+x_{K}}{2} \quad 2=\frac{-1+x_{K}}{2} \\
& \frac{-12}{2}=\frac{3+y_{K}}{2} \\
& \text { g } \frac{4}{2}=\frac{-1+x_{K}}{2} \quad \text { : } \\
& -12=3+y_{K} \\
& -12-3=y_{K} \\
& -15=y_{K} \\
& 4=-1+x_{K} \\
& 4+1=x_{K} \\
& 5=x_{K}
\end{aligned}
$$

$$
\text { بالتالي : } K(5,-15)
$$

