سلسلة تمـارين

تمرين 5

	يمثل الشكل جانبه تصميما مصغرا لمنزل خشبي، مركب من مكعب ط طول حرفه ABCDEFGH ارتفاعه SI =4cm 1- احسب حجم هذا المجسم 2- إذا علمت أن نسبة التصغير هي k الحي $k=\frac{1}{200}$ فاحسب الحجم الحقيقي للمنزل بالمتر مكعب.

1-
لدينا $A B D$ مثلث قائم الزاوية في A ، إذن حسب مبرهنة $B D^{2}=A B^{2}+A D^{2}$
$B D^{2}=3^{2}+6^{2}$
$B D^{2}=9+36$
فيتاغورس المباشـرة :
$B D^{2}=45$
$B D=\sqrt{45}$

لدينا DCH مثلث قائم الزاوية في D ، إذن حسب مبرهنة
$C H^{2}=D C^{2}+D H^{2}$
$C H^{2}=3^{2}+4^{2}$
فيتاغورس المباشرة :
$C H^{2}=25$
CH $=5$
لدينا BGC مثلث قائم الزاوية في C ، إذن حسب مبرهنة $B G^{2}=B C^{2}+C G^{2}$
$B G^{2}=6^{2}+4^{2}$
فيتاغورس المباشرة : $B G^{2}=36+16 \quad$ في
$B G^{2}=52$
$B G=\sqrt{52}$
ب- لنحسب

ب- لنحسب DF
لدينا حسب السؤال السابق BDF مثلث قائم الزاوية في B $D F^{2}=B F^{2}+B D^{2}$
$D F^{2}=4^{2}+(\sqrt{45})^{2}$
$D F^{2}=16+45$
$D F^{2}=61$
$D F=\sqrt{61}$
CEFGH 4
3BCDEFGH 3- لنحسب حجم
CEFGH : CG

$$
\begin{aligned}
& V^{\prime}=\frac{1}{3} \times C G \times S_{E F G H} \\
& V^{\prime}=\frac{1}{3} \times C G \times(E F \times E H) \\
& V^{\prime}=\frac{1}{3} \times 4 \times(3 \times 6) \\
& V^{\prime}=\frac{72}{3}=24
\end{aligned}
$$

®

: معطيات$A B=A D=A E=a=4$	11-
	لدينا ADC مثلث قائم الزاوية في D ، إذن حسب مبرهنة $\begin{aligned} & A C^{2}=A D^{2}+D C^{2} \\ & A C^{2}=4^{2}+4^{2} \\ & A C^{2}=16+16 \\ & A C^{2}=32 \\ & A C=\sqrt{32} \end{aligned}$ \|فيتاغورس المباشرة : AC $\text { Aو بما أن } I \text { منتصف } A=\overline{\frac{A C}{2}=\frac{\sqrt{32}}{2}} \text { : فإن }$ لدينا ADH مثلث قائم الزاوية في D ، إذن حسب مبرهنة $\begin{aligned} & A H^{2}=A D^{2}+D H^{2} \\ & A H^{2}=4^{2}+4^{2} \end{aligned}$
$A H=\sqrt{32}=\sqrt{16 \times 2}=4 \sqrt{2}$ يستحسن تبسيط مما يسمح أيضا بتبسيط $A I=\frac{4 \sqrt{2}}{2}=2 \sqrt{2}$ ، لكنه ليس الزاميا.	$\begin{array}{ll} A H^{2}=16+16 & \text { فيتاغورس المباشرة } \\ A H^{2}=32 \\ A H=\sqrt{32} & \end{array}$
ب- احسب IH	(DH) $\perp(I D)$ (2
لدينا حسب السؤال السابق IDH مثلث قائم الزاوية في D ، إذن حسب مبرهنة فيتاغورس المباشرة : $\begin{aligned} & I H^{2}=I D^{2}+D H^{2} \\ & I H^{2}=\left(\frac{\sqrt{32}}{2}\right)^{2}+4^{2} \\ & I H^{2}=\frac{32}{4}+16 \\ & I H^{2}=8+16 \\ & I H^{2}=24 \\ & I H=\sqrt{24} \end{aligned}$	(DH) $\perp(A D)$: مستطيل ، إذن $A D H E$ لدينا و لدينا DCGH و بما أن (AD) و (DC) متقاطعان و يحددان المستوى $(D H) \perp(A B C D)$: ($A B C D)$ و حيث أن (ID) ضمن المستوى(ABCD) فإن : (DH)
(AI) $\perp(F B D H)$ (3-
لدينا ABCD مربع ، إذن قطراه متعامدان ، منه ($(A I) \perp(B D)$ (AI) $\perp(I H)$ المستوى (FBDH) ، فإن : (FBDH $)$)	إذن : $A I^{2}+I H^{2}=A H^{2}$ بالتالي حسب مبرهنة فيتاغورس العكسية فإن المثلث AIH النقطة I ، أي (AI)
5-	
$V_{1}=a^{2}=4 \times 4 \times 4=64$	

6- لنحسب V2 ${ }_{2}$ حجم رباعي الأوجه AIDH بطريقتين	
الطريقة الثانية	الطريقة الأولى
بما أن (AI) $\perp(F B D H)$ ، فإنه يمكن اعتبار AIDH هرما قاعدته المثلث IDH و ارارتفاعه AI ، منه : $\begin{aligned} & V_{2}=\frac{1}{3} \times A I \times S_{I D H} \\ & V_{2}=\frac{1}{3} \times A I \times \frac{I D \times D H}{2} \\ & V_{2}=\frac{1}{3} \times \frac{\sqrt{32}}{2} \times \frac{\frac{\sqrt{32}}{2} \times 4}{2} \\ & V_{2}=\frac{\sqrt{32}}{6} \times \frac{2 \sqrt{32}}{2}=\frac{\sqrt{32} \times \sqrt{32}}{6}=\frac{32}{6}=\frac{16}{3} \end{aligned}$	بما أن (ABCD) قاعدته المثلث AID و ارتفاعه DH ، منه : $\begin{aligned} & V_{2}=\frac{1}{3} \times D H \times S_{A I D} \\ & V_{2}=\frac{1}{3} \times D H \times \frac{A I \times I D}{2} \\ & V_{2}=\frac{1}{3} \times 4 \times \frac{\frac{\sqrt{32}}{2} \times \frac{\sqrt{32}}{2}}{2} \\ & V_{2}=\frac{4}{3} \times \frac{\frac{32}{4}}{2}=\frac{4 \times 8}{6}=\frac{32}{6}=\frac{16}{3} \end{aligned}$
¢ ¢ ${ }^{\text {¢ }}$	
7-	
$V_{1}=12 V_{2}:$ لدينا	

معطيات :	1- لنحسب حبر
	المجسم يتكون من مكعب و هرم مربع القاعدة. $V_{1}=A B^{3}=3 \times 3 \times 3=27 \mathrm{~cm}^{3}$: حجم المكعب هور $V_{2}=\frac{1}{3} \times S I \times S_{A B C D}$ $V_{2}=\frac{1}{3} \times S I \times A B^{2}$ و حجم الهرم SABCD هو : $V_{2}=\frac{1}{3} \times 4 \times 3 \times 3$ $V_{2}=12 \mathrm{~cm}^{3}$ بالتالي حجم هذا المجسم هو : $V=V_{1}+V_{2}=27+12=39 \mathrm{~cm}^{3}$
	2- لنحسب الحجم الحقيقي للمنزل بالمتر مكب.
لأن : $1000000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}$	$\begin{aligned} & 200 \times 39 \mathrm{~cm}^{3} \\ & \mathrm{~cm}^{3} \end{aligned}$

