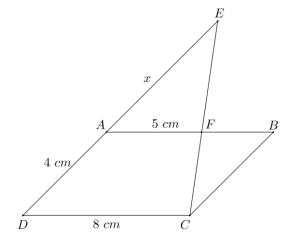
مُ الْمِنْ الْمُعْرِقِينَ مِنْ الْمُعْرِقِينَ مِنْ الْمُعْرِقِينَ مِنْ الْمُعْرِقِينَ مِنْ الْمُعْرِقِينَ مِنْ


المالة (1):

 $AD=4\ cm$ و نعتبر الشكــل الأتي بحيث ABCD : نعتبر الشكــل الأتي بحيث

.DC = 8 cm q AF = 5 cm q

x: -|ستنتج حساب -(2)

*/ إلحــل :

$$rac{AF}{DC}$$
 و منقارن النسبتين $rac{EA}{ED}$ انقارن النسبتين $-$ (1

.(DC) // (AF) : أن /* لنبين أن /*

ABCD : لدينا الأضلاع.

 $.\left(DC
ight)//\left(AF
ight)$: غإن $F\in\left(AB
ight)$ ، و بمأ أن ، $F\in\left(AB
ight)$ غإن ، $\left(DC
ight)//\left(AB
ight)$

نعتبر |لمثلث *EDC*.

: دينا : و بما أن (DC) (AF) فإن حسب تطبيق خاصية طاليس إلمباشرة على المثلث $F\in (EC)$

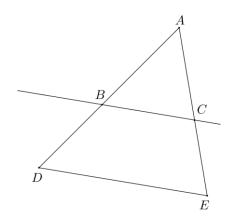
$$\frac{EA}{ED} = \frac{EF}{EC} = \frac{AF}{DC}$$

$$\frac{EA}{ED} = \frac{AF}{DC}$$
 : و منه فإن

x -لنستنتج حساب (2

$$.5(x+4)=8x$$
 : يعني أن $\frac{x}{x+4}=\frac{5}{8}$ يعني أن $\frac{EA}{ED}=\frac{AF}{DC}$: نعلم أن

$$5x + 20 = 8x$$


$$5x - 8x = -20$$

$$-3x = -20$$
 : ومنت فإن

$$x = \frac{-20}{-3}$$

.
$$x = \frac{20}{3} cm$$
 : فإن وأن والتالي فإن

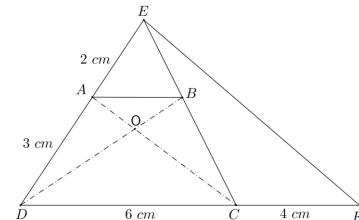
⊕ لَصريك ۞:

$$AB = 14 cm$$
 q $AD = 21 cm$
 $CE = 11 cm$ q $AE = 33 cm$ q

$$.(DE)$$
 $//(BC)$: أثبت أن

: الحل

نعتبر المثلث ADE.


$$B \in (AD)$$
لدينا : و $C \in (AE)$

 $rac{AB}{AD} = rac{AC}{AE}$: و بما أن النقط A و A ثم النقط A و A ثم النقط A و A ثم النقط A و ما أن ال

الصريل 3:

. $\left[DC\right]$ و $\left[AB\right]$ منحرف قاعدتاه ABCD : نعتبر جانبه بحیث DC=6~cm و AD=3~cm و AE=2~cm

- $\frac{EB}{EC}$: نب $\frac{EB}{EC}$: ميمة لنسبة $\frac{EB}{EC}$
- $\frac{OB}{OD}$ 9 $\frac{OA}{OC}$: غارن النسبتين († (2
- $.OA \times DC = OC \times AB$: بين أن -- بين
 - : نقطة من (DC) بحيث F-(3)

و
$$CF=4~cm$$
 ، (أنظر الشكــل). $CF=4~cm$ و $C\in \left[DF\right]$. رأتظر الشكــل).

*/الحـل

1) -- لنحسب AB (أ-(1

/ لنبين أن : (CD) // (AB) /

[CD] و [AB] نعلم أن ABCD شبه منحرف قاعدتاه

(CD) // (AB) : إذن

نعتبر |طثلث *EDC*.

$$A \in (ED)$$
 لدينا $B \in (EC)$

: و بما أن : (CD) // (AB) وأن حسب تطبيق خاصية طاليس المباشرة على المثلث

$$\frac{EA}{ED} = \frac{EB}{EC} = \frac{AB}{DC}$$

$$AB = \frac{2 \times 6}{5} = \frac{12}{5} = 2,4$$
 : يعني أن $\frac{2}{5} = \frac{AB}{6}$: يغني أن $\frac{EA}{ED} = \frac{AB}{DC}$: ياذري و منه فإل $AB = 2,4 \ cm$

$$\frac{EB}{EC}$$
 انحدد قيمة النسبة $--$ (ب

$$\frac{EB}{EC} = \frac{2}{5}$$
 : فإن $\frac{EA}{ED} = \frac{2}{5}$: فإن $\frac{EA}{ED} = \frac{EB}{EC}$: نعلم أن

$$\frac{OB}{OD}$$
 و $\frac{OA}{OC}$ انقارن النسبتين $--(\dot{\uparrow}-(2)$

نعتبر (لمثلث ODC .

$$A \in (OC)$$
 لدينا $B \in (OD)$

، و بما أن(CD) (CD) فإن حسب تطبيق خاصية طاليس المباشرة على المثلث (CD)

$$\frac{OA}{OC} = \frac{OB}{OD} = \frac{AB}{DC}$$

$$\frac{OA}{OC} = \frac{OB}{OD}$$
 : و منه فإل

.
$$OA \times DC = OC \times AB$$
 : ب $-$ لنستنتج أن

$$\frac{OA}{OC} = \frac{OB}{OD} = \frac{AB}{DC}$$
 : نعلم أن

.
$$OA \times DC = OC \times AB$$
 : يعني أن $OA \times DC = \frac{AB}{DC}$: و منه فإن

$$.(EF) // (AC) :$$
 الثبت أن $-(3)$

.
$$\dfrac{DC}{DF}$$
 و $\dfrac{DA}{DE}$: انقارن النسبتين $/*$

$$\frac{DA}{DE} = \frac{DC}{DF}$$
 : يان $\frac{DA}{DE} = \frac{3}{5}$ يان $\frac{DC}{DF} = \frac{6}{10} = \frac{3}{5}$

نعتبر (لمثلث DEF)

$$A \in (DE)$$
 دينا $C \in (DF)$

 $rac{DA}{DE} = rac{DC}{DF}$: في نفس الترتيب بحيث E = DC و بما أن النقط E = DC و بما أن النقط E = DC ثم النقط E = DC فإن حسب تطبيق خاصية طاليس العكسية على المثلث E = DC