ORDRE ET OPÉRATIONS

Objectifs d'apprentissage

- Comparer deux nombres relatifs.
- Maîtriser les propriétés de l'ordre et des opérations.
- Ecrire un encadrement d'un nombre relatif.
- Utiliser les propriétés de l'ordre dans la résolution des problèmes.

Gestion du temps

4 12 heures

Prérequis

- **Solution Solution Solution**
- ⊗ Utiliser les propriétés de l'ordre et l'addition.
- Utiliser les propriétés de l'ordre et la multiplication par un nombre positif.

Outils didactiques

- ♣ Tableau.
- **♣** Livre scolaire.

♦ Pr : Abdelilah BOUTAYEB

♦ Niveau : 3^{ème} APIC

Matière : Mathématiques

♦ Etablissement : Collège Nahda

Activités

Activité 1:1 Compléter le tableau cidessous :

а	b	Comparaison de a et b	a-b	Signe de a-b
4	5			
3	-2			
-5	-8			
-7,5	-2,3			

- 2) A l'aide du tableau, compléter par : < ou >
- * Si : a b < 0 alors a ... b
- * Si : a b > 0 alors $a \dots b$

Activité 2 : a, b et c sont des nombres réels tel que a> b.

-) calculer la différence de a + c et
 b + c.
- 2) Déduis-en la comparaison de a + c et b + c.
- compare a c et b c en procédant de la même façon.
- 4) Enonce les règles que tu viens de démontrer.

Contenu de la leçon

I- Comparaison de deux nombres réels :

- * Propriété : Soient a et b deux nombres réels :
 - Si a b < 0 alors a < b
 - Si a b > 0 alors a > b
 - Si a b = 0 alors a = b
- * Exemple: * On compare: $\frac{3}{5}$ et $\frac{6}{7}$

On a:
$$\frac{3}{5} - \frac{6}{7} = \frac{21}{35} - \frac{30}{35} = \frac{-9}{35}$$

Puisque : $\frac{-9}{35}$ < 0

Alors : $\frac{3}{5} < \frac{6}{7}$

II- Ordre et opérations :

- 1) Ordre et addition ordre et soustraction :
- * Propriété : Soient a, b et c trois nombres réels :

$$>$$
 Si $a < b$ alors $a + c < b + c$

- > Si a < b alors a c < b c
- * Exemple : * On compare : $3 + \sqrt{7}$ et $8 + \sqrt{7}$

On a : 3 < 8 alors $3 + \sqrt{7} < 8 + \sqrt{7}$

** Si x > 3, comparer : x - 5 et - 2

On a x > 3 alors x - 5 > 3 - 5, donc x - 5 > -2

* Propriété : Soient a, b, c et d des nombres réels :

$$\approx$$
 Si $\begin{cases} a < b \\ c < d \end{cases}$ alors $a + c < b + d$

* Exemple : * a et b deux nombres réels tel que a < 4 et 3 > b.

Evaluation

Exercice 1: Comparer les nombres

suivants:

1)
$$a = \frac{4}{7}$$
 et $b = \frac{-5}{6}$

2)
$$a = \frac{3}{2}$$
 et $b = \frac{4}{5}$

3)
$$a = \frac{-2}{5}$$
 et $b = \frac{-3}{4}$

4)
$$a = \sqrt{3} - 4$$
 et $b = \sqrt{3} - 5$

5)
$$a = -3\sqrt{2} - 1$$
 et $b = \sqrt{2} + 7$

<u>Exercice 2:</u> Soient a et b deux nombres réels tels que : $a \ge -8$ et $b \ge 5$

Montrer que:

1)
$$a + 4 \ge -4$$

2)
$$b - \frac{1}{2} \ge \frac{9}{2}$$

3)
$$a + b \ge -3$$

Exercice 3: Compléter:

x > 6	x > 6	x > 6	
$x + 1 > \dots$	x + 7 >	<i>x</i> – <i>4</i> >	
x ≥ -4	x ≥ - 4	x ≥ -4	
<i>x</i> + <i>1</i>	<i>x</i> + <i>7</i>	<i>x</i> – <i>4</i>	
x > 5	x > 8	x > -12	
2 <i>x</i> >	½ <i>x</i> >	<i>¾ x</i> >	

Activité 3 : activité : 6 – page : 43

Activité 4:1 Compléter le tableau cidessous :

а	b	a <b ou a>b</b 	$\frac{1}{a}$	$\frac{1}{b}$	$\frac{1}{a} < \frac{1}{b}$ OU $\frac{1}{a} > \frac{1}{b}$
2	8				
-5	-10				

2) Enoncer la propriété que tu viens de démonter. Montrer que : a + b < 7.

On a : $\begin{cases} a < 4 \\ b < 3 \end{cases}$ alors a + b < 4 + 3 donc a + b < 7.

2) Ordre et multiplication :

* Propriété : Soient a, b et c des nombres réels :

$$\leq \operatorname{Si} \left\{ \begin{array}{l} a < b \\ c > 0 \end{array} \right.$$
 alors $a \times c < b \times c$

$$\implies$$
 Si $\begin{cases} a < b \\ c < 0 \end{cases}$ alors $a \times c > b \times c$

* Exemple : * Soit x un nombre réel tel que x < 3. Comparons -4x et -12.

On a : $\begin{cases} x < 3 \\ -4 < 0 \end{cases}$ alors $-4 \times x > -4 \times 3$ donc -4x > -12.

* Remarque : Soient a et b deux nombres réels :

$$>$$
 Si $a < b$ alors $-a > -b$

* Propriété : Soient a, b, c et d des nombres réels positifs :

* Exemple : * Soit x et y deux nombre réels positifs tel que $x < \sqrt{3}$ et

 $y < 2\sqrt{6}$. Montrer que : $xy < 6\sqrt{2}$.

On a : $\begin{cases} x < \sqrt{3} \\ y < 2\sqrt{6} \end{cases}$ alors $x \times y < \sqrt{3} \times 2\sqrt{6}$ donc $xy < 2\sqrt{18}$

Puisque : $2\sqrt{18} = 2\sqrt{9 \times 2} = 2\sqrt{9} \times \sqrt{2} = 6\sqrt{2}$

Alors : $xy < 6\sqrt{2}$.

3) Ordre et inverse :

Exercice 4 : Compléter :

x < 12	x < 5	x < 13	
<i>x</i> + 4 <	<i>x</i> − <i>1</i> <	<i>x</i> − <i>14</i> <	
$x \ge 2$	<i>x</i> ≥ 5	x ≥ -4	
3x	-2x	5x	
x > 3	x > -4	x > 18	
- x	7 x	0,5 x	

Exercice 5: Comparer les nombres

suivants:

1)
$$a = \sqrt{8}$$
 et $b = 3$

2)
$$a = 3\sqrt{5}$$
 et $b = \sqrt{37}$

3)
$$a = 2\sqrt{5}$$
 et $b = 5$

4)
$$a = 2\sqrt{3}$$
 et $b = 3\sqrt{2}$

5)
$$a = \sqrt{5}$$
 et $b = \sqrt{2} + \sqrt{3}$

6)
$$a = 6 + \sqrt{3}$$
 et $b = 6 + \sqrt{5}$

7)
$$a = 20\sqrt{2}$$
 et $b = -7\sqrt{14}$

8)
$$a = -\sqrt{3}$$
 et $b = -2\sqrt{10}$

9)
$$a = -10\sqrt{2}$$
 et $b = -9\sqrt{3}$

10)
$$a = 2 + 2\sqrt{2}$$
 et $b = 2 + \sqrt{10}$

11)
$$a = 2\sqrt{3} + \sqrt{11}$$
 et $b = \sqrt{11} + \sqrt{10}$

12)
$$a = 1 + \sqrt{6}$$
 et $b = \sqrt{2} + \sqrt{3}$

13)
$$a = \sqrt{17} - \sqrt{11}$$
 et $b = \sqrt{5} - \sqrt{40}$

14)
$$a = 3 + \sqrt{3}$$
 et $b = \sqrt{27} + 1$

Activité 5 : A- a et b deux nombres

 $a^2 - b^2$ est le meme signe de a - b

3- a et b sont deux réels négatifs

1 démontrer que le signe de

 $a^2 - b^2$ est le signe contraire

2) démontere que si $a \leq b$

*d*émontrer que le signe de

2) démontere que si $a \leq b$

réels positifs

 $donc a^2 < b^2$

de a - b

 $donc a^2 > b^2$

és Contenu de la leçon

- * Propriété : Soient a et b deux nombres réels :
 - > Si a < b alors $\frac{1}{a} > \frac{1}{b}$.
- * **Exemple**: * On a : 2 < 8 alors $\frac{1}{2} > \frac{1}{8}$
- * On a: $-10 < -5 \ alors \ \frac{1}{-10} > \frac{1}{-5}$
 - 4) Ordre et carré:
 - * Propriété : Soient a et b deux nombres réels positifs :
 - > Si a < b alors $a^2 < b^2$.
 - > Si $a^2 < b^2$ alors a < b.
 - * Propriété : Soient a et b deux nombres réels négatifs :
 - > Si a < b alors $a^2 > b^2$.
 - > Si $a^2 > b^2$ alors a < b.
- * Exemple : * Comparons : $3\sqrt{5}$ et $\sqrt{41}$

On
$$a: \begin{cases} (3\sqrt{5})^2 = 9 \times 5 = 45 \\ (\sqrt{41})^2 = 41 \end{cases}$$
 donc : $(3\sqrt{5})^2 > (\sqrt{41})^2$

Puisque $3\sqrt{5}$ et $\sqrt{41}$ deux nombres positifs, alors : $3\sqrt{5} > \sqrt{41}$.

- 5) Ordre et racine carré:
- * Propriété : Soient a et b deux nombres réels positifs :
 - > Si a < b alors $\sqrt{a} < \sqrt{b}$.
 - > Si $\sqrt{a} < \sqrt{b}$ alors a < b.
- * **Exemple :** * Comparons : $\sqrt{15}$ et $\sqrt{19}$
- Puisque : 15 < 19 *alors* $\sqrt{15}$ < $\sqrt{19}$

Exercice 6: 1) Comparer les nombres $7\sqrt{2}$ et $5\sqrt{3}$ puis déduire la comparaison des nombres $\frac{1}{7\sqrt{2}}$ et $\frac{1}{5\sqrt{3}}$

2) Comparer les nombres $5\sqrt{2}$ et $4\sqrt{3}$ puis déduire la comparaison des nombres $\sqrt{4\sqrt{3}+7}$ et $\sqrt{5\sqrt{2}+7}$.

Exercice 7: 1) Comparer les nombres :

$$\frac{13}{5}$$
 et $\frac{12}{7}$

2) Déduire la comparaison de :

$$\frac{13}{5} \times (-3)^{11}$$
 et $\frac{12}{7} \times (-3)^{11}$.

3) Comparer les nombres :

$$3\sqrt{3} \ et \ \sqrt{11} + 4$$

4) Déduire la comparaison de :

$$\frac{1}{3\sqrt{3}} - \sqrt{10}$$
 et $\frac{1}{\sqrt{11}+4} - \sqrt{10}$

Activité 6: Soient a, b, x, y, z et t des

nombres réels tels que :

Ft $x + z \le a + b$

a+b

et - b < -z

 $x \le a \le y$ et $z \le b \le t$

3) Démontrer que $-t \le -b$

1) Montrer que : $a+b \le y + t$

2) En déduire un encadrement de :

4) déduire un encadrement de -b

5) déduire l'encadrement de a-b

(remarquer que a-b=a+(-b))

Contenu de la leçon

III- Encadrement :

1) Encadrement et addition :

* Propriété : Soient a, b, c, d, x et y des nombres réels :

$$Arr Si \left\{ egin{array}{l} a \leq x \leq b \\ c \leq y \leq d \end{array}
ight. ext{ alors } a+c \leq x+y \leq b+d. \end{array}$$

* Exemple: * x et y deux nombres réels tels que : $3 \le x \le 8$ et

$$-4 \le y \le 2$$
. Encadrer : $x + y$.

On a:
$$\begin{cases} 3 \le x \le 8 \\ -4 \le y \le 2 \end{cases}$$
 donc: $3 + (-4) \le x + y \le 8 + 2$,

alors :
$$-1 \le x + y \le 10$$

2) Encadrement et opposé :

* Propriété : Soient a, b et x des nombres réels :

$$\cong$$
 Si $a \le x \le b$ alors $-b \le -x \le -a$.

* **Exemple**: * x et y deux nombres réels tels que : $2 \le x \le 7$ et

$$-1 \le y \le 5$$
. Encadrer: $-x \ et - y$.

 \Rightarrow $0n \ a: 2 \le x \le 7 \ alors: -7 \le -x \le -2.$

$$\Rightarrow$$
 $0n \ a : -1 \le y \le 5 \ alors : -5 \le -y \le 1.$

3) Encadrement et soustraction :

* **Propriété**: Soient *a*, *b*, *c*, *d*, *x* et *y* des nombres réels :

$$\approx$$
 Si $\begin{cases} a \le x \le b \\ c \le y \le d \end{cases}$ alors $a - d \le x - y \le b - c$.

* Exemple: * x et y deux nombres réels tels que : $2 \le x \le 7$ et

$$-1 \le y \le 5$$
. Encadrer : $x - y$.

On a : $\begin{cases} 2 \le x \le 7 \\ -1 \le y \le 5 \end{cases}$, donc : $\begin{cases} 2 \le x \le 7 \\ -5 \le -y \le 1 \end{cases}$

alors:
$$2 + (-5) \le x + (-y) \le 7 + 1$$
, d'où: $-3 \le x - y \le 8$

<u>Exercice 8:</u> x et y deux nombres réels tel

que :
$$2 \le x \le 5$$
 et $1 \le y \le 4$

Encadrer:

$$x + 5$$
; $3x$; $-5y$; $y - 3$; xy ;

$$\frac{1}{x}$$
; $\frac{1}{y}$; $x+y$; $x-y$; $\frac{1}{x+y}$;

$$\frac{x-y}{x+y}$$
; $2x+y$; $-4x+3y$; $3x-2y$

Contenu de la leçon

Activité 7: A-Soient a, b, x, y, z et t des nombres réels tels que :

$$(a > 0 \ et \ b > 0)$$

$$x \le a \le y$$
 et $z \le b \le t$

- A) Montrer que : $a \times b \le y \times t$ Et $x \times z \le a \times b$
- 2) En déduire l'encadrement de : $a \times b$
- 3) On considère que b<0, montrer que $a \times b \le y \times z$ et $x \times t \le a \times b$
- **3**-On considère que $a \neq 0$ et

$$x \neq 0$$
 et $y \neq 0$

- **4)** Montrer que $\frac{1}{a} \le \frac{1}{x}$ et $\frac{1}{y} \le \frac{1}{a}$
- **5)** Déduire l'encadrement de $\frac{1}{a}$

On considère que $b \neq 0$ et

$$t \neq 0 \ et \ z \neq 0$$

- **6)** Donner l'encadrement de $\frac{1}{h}$
- 7) Déduire l'encadrement de $\frac{a}{b}$

4) Encadrement et multiplication :

* Propriété : Soient a, b, c, d, x et y des nombres réels positifs :

$$Arr Si \begin{cases} a \leq x \leq b \\ c \leq y \leq d \end{cases}$$
 alors $ac \leq xy \leq bd$.

* Exemple: * x et y deux nombres réels tels que : $1 \le x \le 7$ et $4 \le y \le 6$. Encadrer : xy.

On a :
$$\begin{cases} 1 \le x \le 7 \\ 4 \le y \le 6 \end{cases}$$
 donc : $1 \times 4 \le x \times y \le 7 \times 6$, alors : $4 \le xy \le 42$

5) Encadrement et inverse :

* Propriété : Soient a, b et x des nombres réels positifs :

$$ag{Si } a \le x \le b ext{ alors } \frac{1}{b} \le \frac{1}{x} \le \frac{1}{a}.$$

* Exemple: * x un nombre réel tel que : $5 \le x \le 9$. Encadrer : $\frac{1}{x}$.

On a:
$$5 \le x \le 9 \ alors : \frac{1}{9} \le \frac{1}{x} \le \frac{1}{5}$$

6) Encadrement et carré, encadrement et racine carrée :

* Propriété : Soient a, b et x des nombres réels positifs :

$$imes$$
 Si $a \le x \le b$ alors $a^2 \le x^2 \le b^2$ $et \sqrt{a} \le \sqrt{x} \le \sqrt{b}$.

* Exemple: * x et y deux nombres réels tels que : $16 \le x \le 25$ et

$$-3 \le y \le -2$$
. Encadrer : \sqrt{x} et y^2 .

 \Rightarrow $0n \ a: 16 \le x \le 25, donc: \sqrt{16} \le \sqrt{x} \le \sqrt{25}, alors: 4 \le \sqrt{x} \le 5$

$$\Rightarrow$$
 $0n \ a: -3 \le y \le -2, donc: 2 \le -y \le 3, donc: 2^2 \le (-y)^2 \le 3^2$

 $Alors: 4 \le y^2 \le 9$

Exercice 9: Soit a et b deux nombres réels

tels que:

$$1 \le \frac{a-4}{2} \le \frac{3}{2}$$
 et $-5 \le b \le -4$

1) Montrer que : $6 \le a \le 7$

2) Encadrer les nombres : a + b;

$$a \times b$$
; $3a - 2b$

3) Montrer que : $\sqrt{2} \le \sqrt{\frac{a}{a+b}} \le \sqrt{7}$