Etablissement : lycée Collégiale Matière : Mathématiques Niveau : 3APIC
Mohammed ELQOURI

Année Scolaire : 2019/2020 Chapitre 3<mark>: Repère dans le</mark> Semestre : 2
Professeur : LAHSAINI Yassin

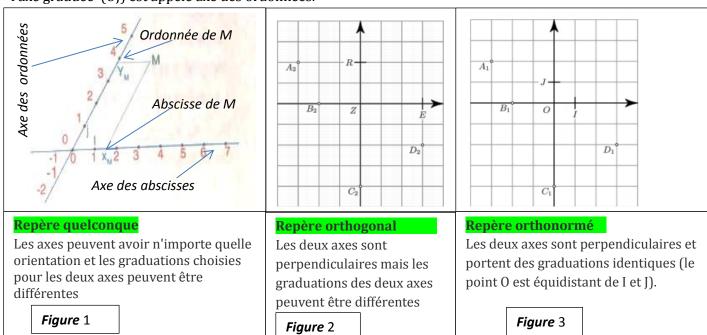
I- <u>Coordonnées d'un point</u>

1- Définition et type des repères :

On considère trois points du plan non alignés O, I et J. On dit alors que (O, I, J) définit un repère du plan.

- \neg Si (OI) et (OJ) sont perpendiculaires, on dit que le repère est orthogonal.
- ¬ Si de plus OI=OJ.On dit que le repère est orthonormé.

¬Dans un repère (O, I, J): O est appelé origine du repère ; l'axe graduée (OI) est appelé axe des abscisses et l'axe graduée (OI) est appelé axe des ordonnées.



2- Coordonnées d'un point

(O, I, J) est un repère et M un point du plan :

- \neg La droite qui passe par M et qu'est parallèle à(OJ) coupe (OI) en un point d'abscisse noté x_M que l'on appelle abscisse du point M. *(Figure* 1)
- \neg La droite qui passe par M et qu'est parallèle à(OI) coupe (OJ) en un point d'abscisse noté y_M que l'on appelle ordonnée du point M. *(Figure* 1)
 - $\neg x_M$ et y_M sont appelé les coordonnées du point M on le note M(x_M , y_M).

Remarque :

- ¬ Si un point appartient à l'axe des abscisses alors son ordonnée est 0
- ¬ Si un point appartient à l'axe des ordonnées alors son abscisse est 0

Exemples

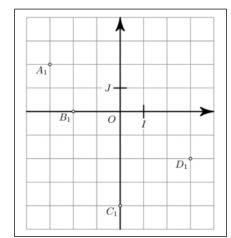
- ¬ Le point D_1 à comme abscisse 3 et comme ordonnée -2 on écrit : D_1 (3, −2)
- ¬Le point B_1 à comme abscisse -2 et comme ordonnée 0 on écrit : $A_1(-2,0)$

Application:

 \neg Donner les coordonnées des points A_1 et C_1

.....

 \neg sur le repère (0,I,J) tracer les points des coordonnées suivants : A(2,3); B(0,2) et D(-3-2).



II- Les coordonnées du mílieu d'un segment

Propriété: Dans le plan menu d'un repère, si on a $A(x_A, y_A)$ et $B(x_B, y_B)$ alors les coordonnées de M le milieu de [AB] sont : $x_M = \frac{x_A + x_B}{2}$ et $y_M = \frac{y_A + y_B}{2}$.on écrit $M(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2})$.

Exemple :

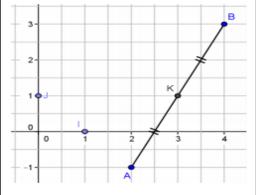
¬ considère les points : A(2;-1) et B(4;3) alors les coordonnées de K, le milieu de [AB] sont :

$$x_K = \frac{x_A + x_B}{2} = \frac{2+4}{2} = \frac{6}{2} = 3$$
 et $y_K = \frac{y_A + y_B}{2} = \frac{-1+3}{2} = \frac{2}{2} = 1$. finalement K(3,1)

Application :

 \neg On considère les points A(2;-1),B(3;2),C(-1;3) et D(-2;0).

Montrer que le quadrilatère ABCD est parallélogramme



III- <u>Les coordonnées d'un vecteur</u>

Propriété 1 :

 \neg Dans un repère si deux points $A(x_A, y_A)$ et $B(x_B, y_B)$, alors

le vecteur \overrightarrow{AB} a pour coordonnées $x_B - x_A$ et $y_B - y_A$ on écrit : $\overrightarrow{AB}(x_B - x_A)$, $y_B - y_A$

 \neg On peut lire directement les coordonnées du vecteur \overrightarrow{AB} sur le repère en décomposant le déplacement de A à B en un déplacement horizontal et un déplacement vertical.

Propriété 2 :

Deux vecteurs sont égaux signifie qu'ils ont les mêmes coordonnées.

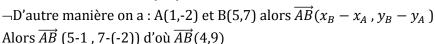
Autrement dit $\overrightarrow{AB} = \overrightarrow{CD}$ signifie que : $x_B - x_A = x_D - x_C$ et $y_B - y_A = y_D - y_C$.

Propriété 2 :

Soient $\overrightarrow{AB}(a, b)$ et $\overrightarrow{CD}(c, d)$ et k un nombre réel alors : $k \times \overrightarrow{AB}(k \times a; k \times b)$ et $\overrightarrow{AB} + \overrightarrow{CD} = (a+c; b+d)$

Exemple :

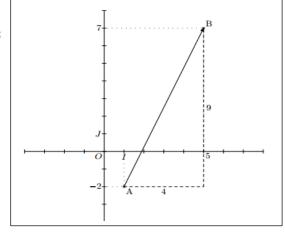
¬Pour déplacer de A vers B, en fait un déplacement horizontal par 4 unités et un déplacement vertical par 9 unités alors les coordonnées de vecteur \overrightarrow{AB} sont : \overrightarrow{AB} (4,9).



$$-2\overrightarrow{AB}(2\times4,2\times9)$$
 d'où $2\overrightarrow{AB}(8;18)$

 $-\overrightarrow{OI}(1-0, 0-0)$ alors $\overrightarrow{OI}(1;0)$ et $\overrightarrow{OJ}(0-0; 1-0)$ alors $\overrightarrow{OJ}(0;1)$ d'où

 $(\overrightarrow{OI} + \overrightarrow{OJ})(1+0; 0+1)$ finalement $(\overrightarrow{OI} + \overrightarrow{OJ})(1; 1)$



Application:

 \neg On considère les points A(2;-1),B(3;2),C(-1;3) et D(-2;0).

Montrer que le quadrilatère ABCD est parallélogramme

 \neg Déterminer les coordonnées de : $\overrightarrow{AB} + \overrightarrow{AD}$:

¬Déterminer les coordonnées de E pour que ABCE soit un parallélogramme

IV- <u>Distance entre deux points</u>

Propriété:

 \neg Dans un repère orthonormé, si $A(x_A; y_A)$ et $B(x_B; y_B)$ alors : $AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$

Conséquence: si $\overrightarrow{AB}(a$, b) alors AB= $\sqrt{a^2+b^2}$

Exemple:

¬soient A(2,4) et B(5,8), alors AB = $\sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$ = $\sqrt{(5-2)^2 + (8-4)^2}$ = $\sqrt{9+16}$ = $\sqrt{25}$ = 5; d'autre manière on a \overrightarrow{AB} (5 − 2; 8 − 4) signifie que \overrightarrow{AB} (3, 4) alors AB = $\sqrt{3^2 + 4^2}$ = $\sqrt{9+16}$ = $\sqrt{25}$ =5

 \neg Application: Dans un repère orthonormé (0, I, J), on donne les points: A (-3; 4), B(2,2) et C(4; -3). Montrer que le triangle ABC est isocèle.