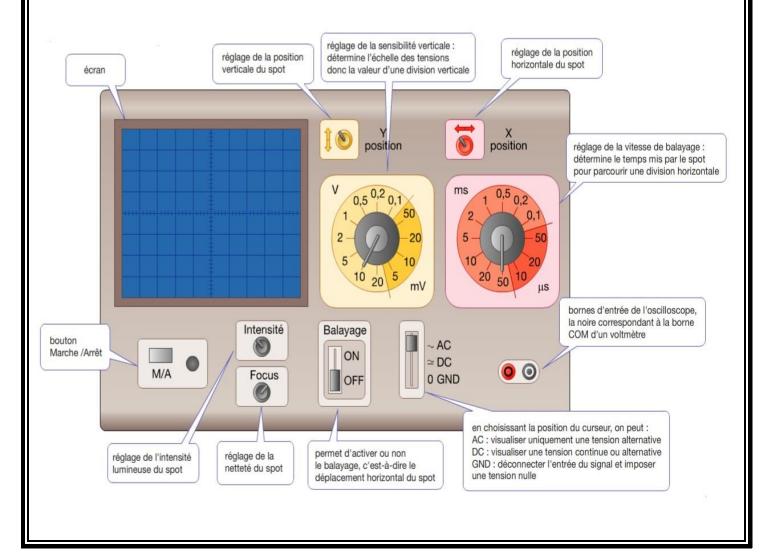
Le courant électrique alternatif sinusoïdal



<u>I-</u> <u>l'oscilloscope</u><u>1-</u> <u>définition</u>

L'oscilloscope est un appareil qui permet de mesure et de visualiser la variation de la tension en fonction du temps. Il se branche en parallèles (comme un voltmètre) aux bornes des éléments d'un circuit électrique

La courbe obtenue sur l'écran d'un oscilloscope est appelée un oscillogramme.

2- description de l'oscilloscope

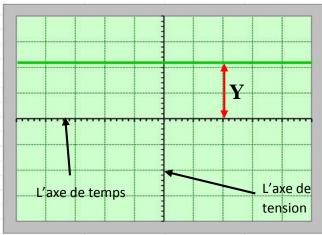
◆ La sensibilité verticale correspond à l'échelle verticale de l'oscillogramme. On la note
S_v et elle s'exprime en Volt par division

Exemple:

Si l'on choisit une sensibilité verticale de S_v = 2 V/div alors une division verticale représente 2V

♦ La sensibilité horizontale est l'échelle de l'axe horizontal représentant le temps, on l'appelle aussi vitesse de balayage noté S_hou B.

Elle s'exprime en S/div ou ms / div ou µs/div.


Exemple

Si l'on choisit une **sensibilité horizontale** de **S**_h= **20 ms/div** alors une division **horizontale** représente 20ms

- II- Visualisation des tensions à l'aide d'un oscilloscope
- 1- <u>Tension continu</u>
- a- Expérience

On relie la borne positive d'une pile à la borne d'entrée de l'oscilloscope, et la borne négative de la pile avec la borne **com** de l'oscilloscope

- on met le sélecteur en mode **DC**
- Sv = 2V/div

b- Observation et conclusion

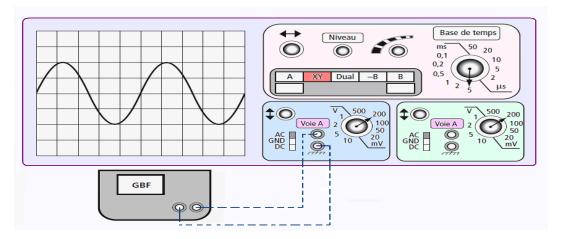
On observe sur l'écran d'oscilloscope un trait horizontal au-dessus de l'axe de temps. On dit que la **tension continue reste constante au cours de temps**

Pour calculer cette tension électrique, on utilise la formule suivante :

 \mathbf{U} = tension en volt (\mathbf{V})

 S_v = sensibilité verticale (V/div)

Y = nombre de graduation (div)


Exemple: On a: Sv = 2V/div et Y = 2,2 div

Donc $U = Sv \times Y = 2V/div \times 2.2 div = 4.4 V$

2- Tension alternative

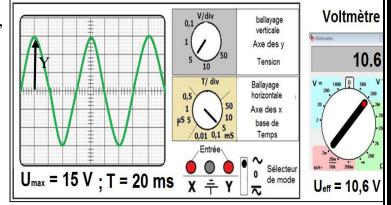
a- Expérience

On relie les bornes de GBF aux bornes de l'oscilloscope et on met le sélecteur en mode **AC**

b - Observation et conclusion

On obtient une tension:

- variable : elle change au cours de temps
- alternative : elle prend des valeurs positives et négatives
- **périodique** : elle se répète régulièrement et se reproduit identique à lui-même au cours de temps
- sinusoïdale : elle se forme des vagues


III- les caractéristiques d'une tension alternative

1- tension maximale Umax

- Pour déterminer la tension maximale, on utilise l'oscilloscope
- Pour calculer la tension maximale, on utilise la formule suivante :

 $\overline{U_{max}}$ = tension maximale en volt (V)

 $S_v = sensibilité verticale (V/div)$

Y = nombre de graduation verticale (div)

Exemple

On a : $S_v = 5V/\text{div}$ et Y = 3 divDonc $U_{\text{max}} = S_v x Y = 5V/\text{div} x 3\text{div}$

d'ou $U_{max} = 15V$

La **tension maximale** est la valeur **maximale** (déviation **maximale**) prise par une **tension** alternative au cours du temps. Elle se note **U**_{max} et elle s'exprime en volt (**V**)

2- Tension efficace Ueff

- ➤ Pour mesurer la tension **efficace**, il faut **lire la valeur sur le voltmètre** en mode alternatif.
- $ightharpoonup U_{max}$ et U_{eff} sont donc des grandeurs **proportionnelles**. Elles sont liées par la relation :

$$U_{\text{max}} = 1,41 \times U_{\text{eff}}$$

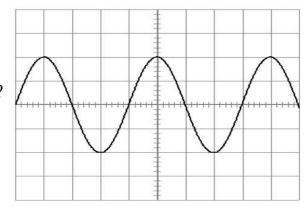
Exemple D'après l'expérience précédente

- le voltmètre affiche la valeur 10,6 V donc $\frac{\text{U}_{\text{eff}} = 10,6 \text{ V}}{\text{U}_{\text{eff}}}$
- Si on utilise la relation $U_{max} = 1.41 \times U_{eff}$

alors
$$U_{\text{eff}} = \frac{Umax}{1,41} = \frac{15}{1,41} = \frac{10,6 \text{ V}}{1}$$

Exercice d'application

L'oscillogramme représenté ci-contre a été obtenu avec les réglages :


- Sensibilité verticale : 5V /div
 - 1- Quelle est le type de la tension visualiser ? Tension alternative sinusoïdale
 - 2- Calculer la tension maximale U_{max} On a : $S_v = 5V/\text{div et } Y = 2 \text{ div}$

Donc
$$U_{\text{max}} = S_v x Y = 5V/\text{div } x 2\text{div}$$

d'ou
$$U_{max} = 15V$$

3- Déduire la valeur de la tension efficace U_{eff}

$$U_{\text{eff}} = \frac{Umax}{1,41} = \frac{10}{1,41} = \frac{7,09 \text{ V}}{1}$$

