

لأكاديمية الجهوية للتربية والتكوين لجهة سوس ماسة

Direction régionale Taroudant collège Tifnout

Première année du cycle secondaire collégial parcours international

Matière : Physique et Chimie

Chapitre 4: Le courant électrique continu

Réalisé par :

Lahcen SELLAK

E-mail: lahcensellak17@gmail.com Année scolaire: 2019/2020

Plan

Sens conventionnel du courant électrique continu

Intensité du courant électrique continu

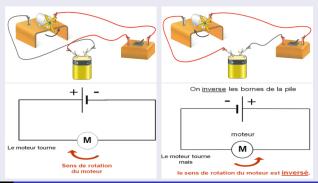
Objectifs

Objectifs

- Connaître le sens conventionnel du courant électrique;
- Connaître la notion de de l'intensité du courant électrique et son unité;
- Savoir utiliser l'ampèremètre pour mesurer l'intensité du courant dans un circuit électrique.

Situation problème

Situation problème


La petite voiture électrique est équipée d'un moteur électrique alimenté par une batterie intégrée à l'intérieure de la voiture. Elle est commandée à distance par une télécommande.

• Comment cette voiture change-t-elle de vitesse et de sens de mouvement ?

Le courant électrique a-t-il un sens?

Expérience

- Réaliser le circuit suivant.
- Observer le sens de rotation du moteur, puis inverser le branchement aux bornes de la pile et observer à nouveau.

Le courant électrique a-t-il un sens?

Observation

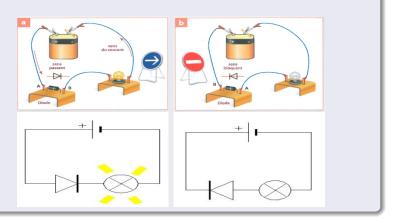
 Le sens de rotation du moteur change lorsque on inverse le branchement aux bornes de la pile.

Conclusion

 le courant ne circule que dans un seul sens, ce sens dépend du branchement de la borne positive et la borne négative de la pile.

Sens conventionnel du courant électrique continu

La diode


- la diode est un dipôle qui ne laisse passer le courant électrique que dans un seul sens appelé «le sens passant».
- Lorsqu'une diode est branchée en sens bloquant, elle se comporte comme un interrupteur ouvert.

Sens conventionnel du courant électrique continu

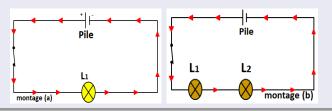
Expérience

• On réalise l'expérience suivante :

Sens conventionnel du courant électrique continu

Observation

- Dans le montage (a) la diode est passante (laisse passer le courant électrique), et la lampe s'allume .
- Dans le montage (b) on a inversé le branchement des bornes de la pile, la lampe ne s'allume car la diode est bloqué (ne laisse pas passer le courant).


Conclusion

- On constate donc que le courant électrique continu circule de la borne positive (+) vers la borne négative (-) à l'extérieur du générateur (ou la pile). C'est : le sens conventionnel du courant.
- On représente le sens du courant dans un circuit par une flèche

Intensité du courant électrique continu

Expérience

- On réalise le circuit électrique comportant une pile, une lampe, un interrupteur et des fils de connexion. Observer l'éclat de la lampe.
- Ajouter une deuxième lampe et observer à nouveau.

Intensité du courant électrique continu

Observation

 La luminosité de la lampe dans le montage a est plus forte que dans le montage b. On dit que le courant dans le montage a est plus intense que dans le montage b.

Conclusion

- Le courant électrique continu est caractérisé par une grandeur physique mesurable appelée l'intensité du courant, c'est le débit d'électricité qui passe dans un fils électrique, son symbole est I.
- L'unité légale de l'intensité de l'intensité du courant est l'ampère de symbole A.

1mA = 0.001A ; 1KA = 1000A

Mesure de l'intensité du courant électrique

Appareils de mesure

- L'intensité du courant électrique se mesure à l'adie d'un ampèremètre, de symbole branché en série et de telle manière que le courant entre dans sa borne positive.
- Il existe deux types d'ampèremètre, analogique (aiguille) et numérique (le multimètre).

Mesure de l'intensité du courant électrique

Utilisation de l'ampèremètre à aiguille

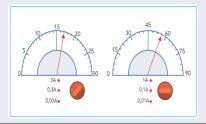
• Pour mesurer l'intensité du courant avec un ampèremètre à aiguille on applique la relation suivante :

$$I = \frac{C \times n}{N}$$

- C : Le calibre de mesure ;
- n : La position de l'aiguille sur l'échelle de lecture ;
- N : Le nombre total de graduations N.

Mesure de l'intensité du courant électrique

Mesure de l'intensité du courant électrique avec un multimètre


Pour utiliser le multimètre en mode ampèremètre, il faudra :

- Placer le sélecteur dans la zone A en courant continue (DC);
- Ensuite choisir le calibre le plus grand ;
- Brancher la borne du circuit du coté de la borne positive du générateur sur la borne « 10A » ou « mA » du multimétre et l'autre borne du circuit sur la borne COM du multimètre.
- Diminuer le calibre si nécessaire pour obtenir la mesure la plus prise possible.

Exercices d'applications

Exercice 1

Calculer les intensités du courant électrique à partir des schémas d'écran des ampèremètres analogiques suivants.

Exercices d'applications

Dans quel schéma on a bien représenté le sens du courant?