

Lycée collégial Challah - Salé-

Physique - Chimie

1 A C

Le courant électrique continu

Prof: A. Laghrabli

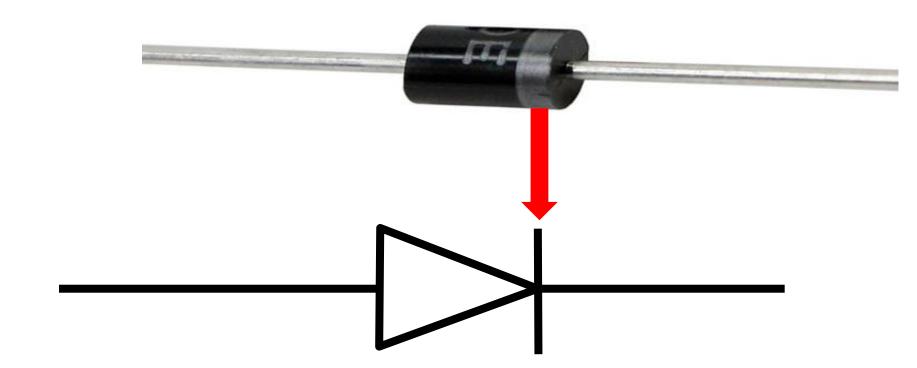
La télécommande sert à piloter le mouvement de la voiture électrique en avant est en arrière

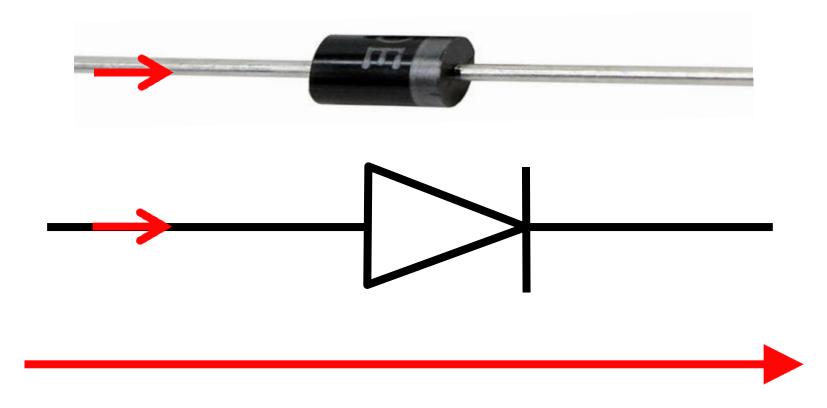
Comment peut-on expliquer le changement du sens de la voiture électrique?

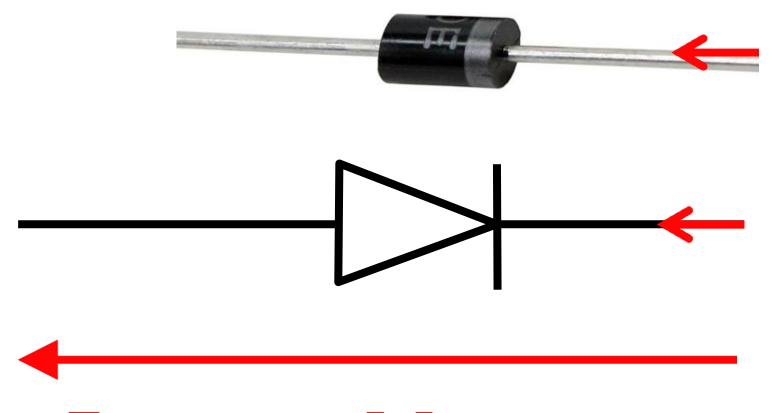
Sources du courant électrique continu

Générateurs ayants deux pôles différents (+) et (-)

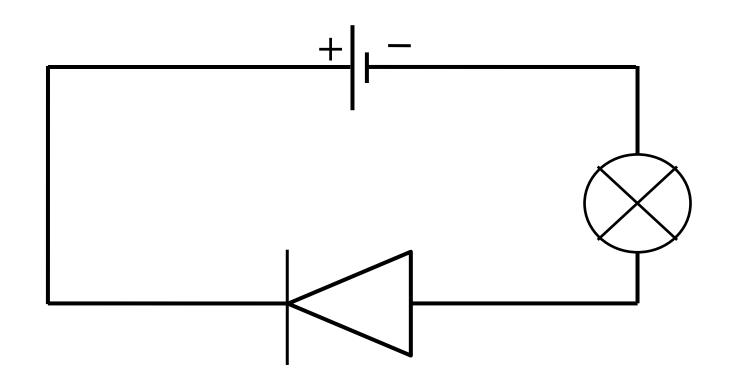
On symbolise le courant électrique continu par:


ou DC

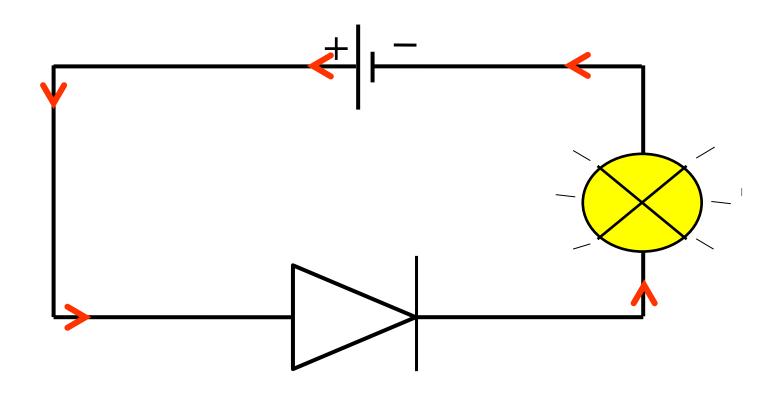

Sens conventionnel du courant électrique



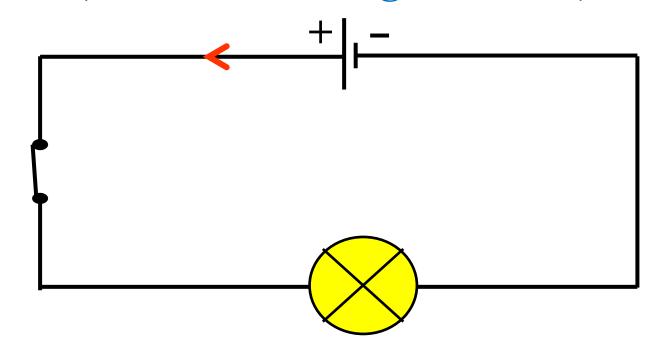
On symbolise la diode par:



Le sens passant



Le sens bloquant


Expérience:

On change le sens de la diode:

le courant électrique circule toujours de la borne positive (+) vers la borne négative (-) (à l'extérieur du générateur).

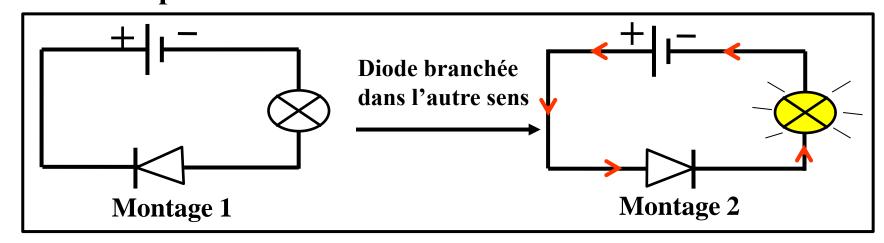
18/04 Le courant électrique continu التيار الكهربائي المستمر

par DC.

I. Sources du courant électrique continu

(+) et un pôle négatif (-) comme les piles, les batteries ... ✓ On symbolise le courant électrique continu par = ou

✓ Le courant électrique continu est produit par des


générateurs ayants deux pôles différents : un pôle positif

II. Sens conventionnel du courant électrique

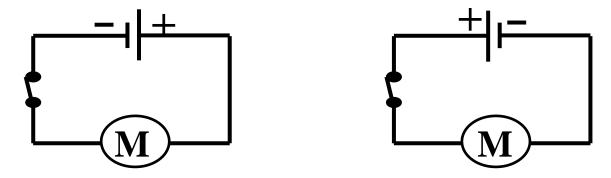
- 1) La diode
- ✓ la diode est un dipôle qui ne laisse passer le courant électrique que dans un seul sens.
- ✓ On symbolise la diode par:
- ✓ Le sens passant, est celui qui correspond au sens de la flèche de son symbole. l'autre sens est bloquant.

2) Sens conventionnel du courant électrique

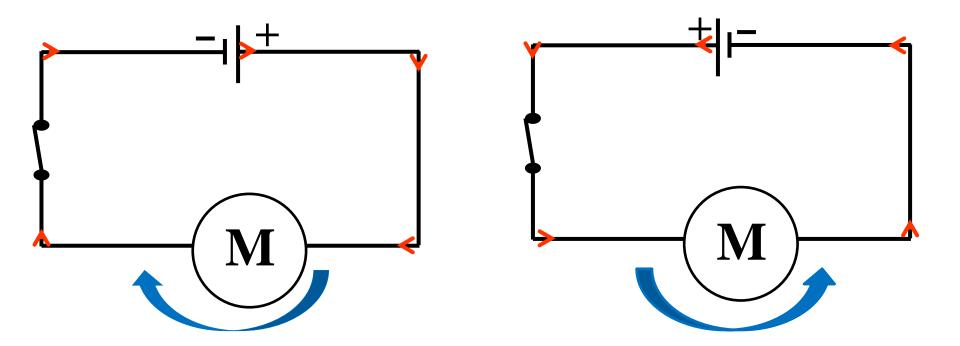
a. Expérience : Réalisons les deux circuits suivants :

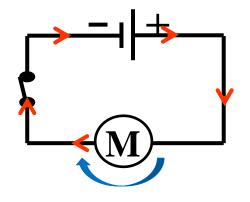
b. Observation

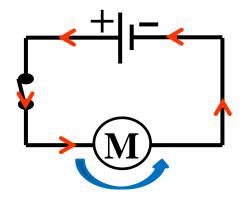
Montage 1 : La lampe ne s'allume pas, la diode ne laisse pas passer le courant, on dit qu'elle est branchée dans le sens bloquant.


Montage 2 : La lampe s'allume. La diode laisse passer le courant, on dit qu'elle est branchée dans le sens passant

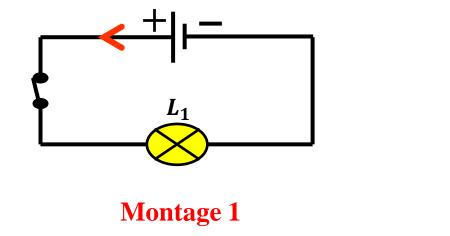
c. Conclusion:

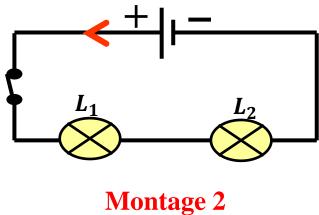

- ✓ Dans un circuit électrique le courant électrique circule toujours de la borne positive (+) vers la borne négative (−) (à l'extérieur du générateur).
- ✓ On représente le sens du courant par une flèche placée sur un fil de connexion:


Evaluation 1:


Réalisez les deux montages suivants:

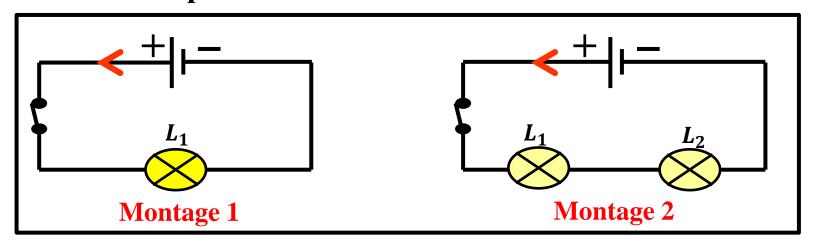
Indiquer dans chaque cas le sens du courant électrique et le sens de rotation du moteur. Conclure




Conclusion : Le sens de rotation du moteur dépend du sens du courant électrique dans le circuit

Notion d'intensité du courant électrique

Expérience:


Réalisons les deux circuits suivants :

III. Intensité du courant électrique

- 1) Notion d'intensité électrique
 - a. Expérience : Réalisons les deux circuits suivants :

- b. Observation et interprétation
- ✓ Lorsqu'on ajoute une lampe L_2 (montage 2), On observe que l'éclat des deux lampes devient faible.

✓ On dit que le courant électrique dans le montage 1 est plus intense que le courant électrique dans le montage 2.

c. Conclusion

- ✓ L'intensité électrique, notée I, est la quantité d'électricité circulant dans un circuit électrique.
 - ✓ L'unité de l'intensité est l'ampère, de symbole A.
- ✓ Il existe des multiples et sous multiples de l'ampère :

A	•	•	mA	•	•	μΑ

Application: $1A = mA / 1\mu A = mA$

André-Marie Ampère

Mathématicien, physicien, chimiste, et philosophe français

On donna son nom a l'unité de l'intensité : Ampère.

1775 - 1836

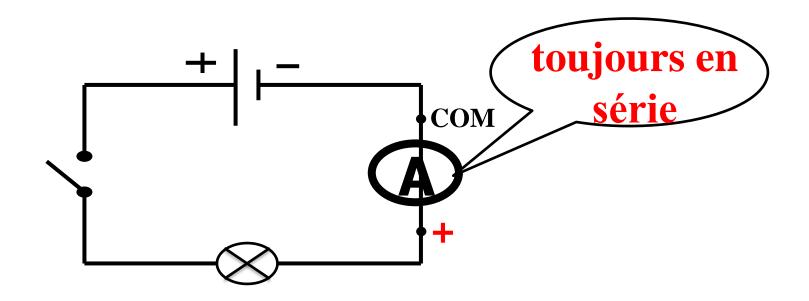
Mesure de l'intensité du courant électrique

Ampèremètre

Borne négative (COM)

Echelle de lecture

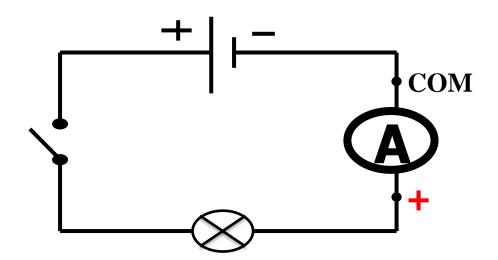
Calibres


Borne positive (+)

Curseur

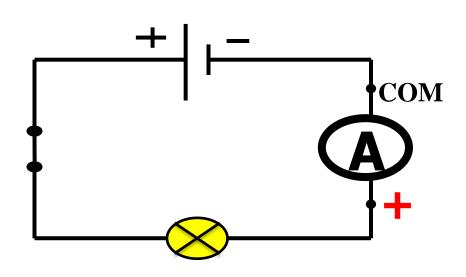
Symbole

Se branche toujours en série dans le circuit



Principe de lecture d'un ampèremètre analogique

Réglez le curseur sur le mode (DC) ou (=), et choisir la plus grande valeur du calibre.



Nous insérons l'ampèremètre en série dans le circuit, où la borne positive est liée au pôle positif du générateur

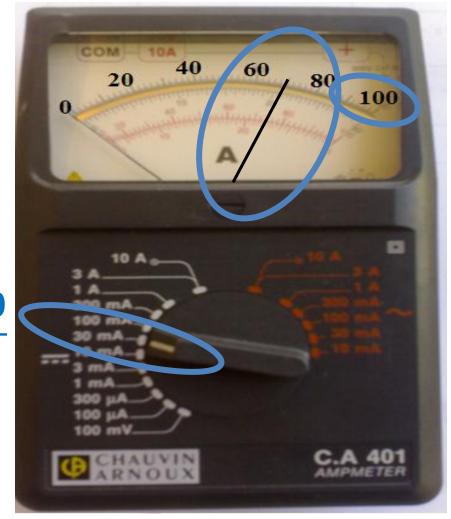
On ferme le circuit, puis on détermine le calibre approprié.

On calcule l'intensité I à l'aide de la formule :

$$\mathbf{I} = \frac{C \times n}{N}$$

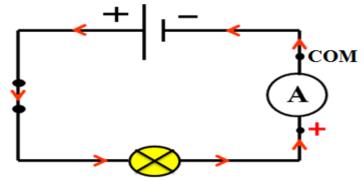
Exemple:

On a:
$$C = 30 \text{ mA}$$


$$N = 100$$

$$n = 70$$

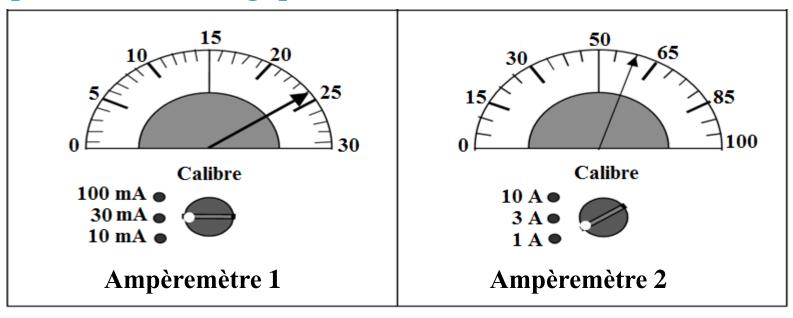
alors:


$$I = \frac{C \times n}{N} = \frac{30 \, mA \times 70}{100}$$

$$I = 21 mA$$

- 2) Mesure de l'intensité du courant électrique
- ✓ On mesure l'intensité du courant électrique avec un appareil appelé: Ampèremètre.
- ✓ On symbolise l'ampèremètre par :

 (A) COM
- ✓ L'ampèremètre est polarisé, <u>il se branche toujours en</u> <u>série dans le circuit</u>, de telle manière que le courant qui le traverse entre par sa borne positive.

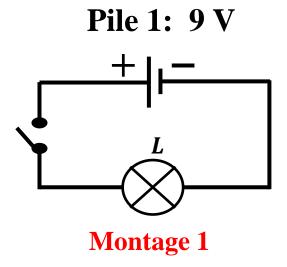


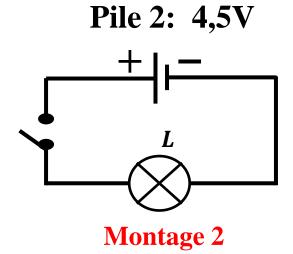
- ☐ Principe de lecture d'un ampèremètre analogique
- ✓ La mesure sur ce type d'appareil est caractérisée par trois données qui serviront au calcul de l'intensité du courant électrique:
- C : Le calibre, c'est l'intensité maximale qui peut être mesurée pour la position choisie du curseur de l'ampèremètre
- n : La position de l'aiguille sur l'échelle de lecture.
- N : Le nombre total de graduations de l'échelle de lecture.
- On calcule l'intensité I à l'aide de la formule :

$$\mathbf{I} = \frac{\mathbf{c} \times \mathbf{r}}{\mathbf{N}}$$

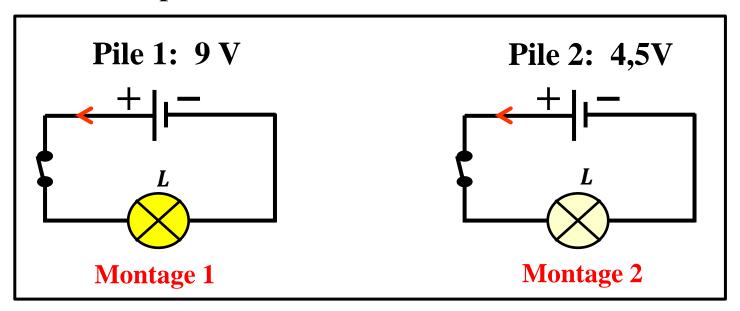
Evaluation 2:

Calculer les intensités à partir des schémas d'écran des ampèremètres analogiques suivants.





Expérience: Réalisons les deux circuits suivants



IV. Tension électrique

1) Notion de tension électrique

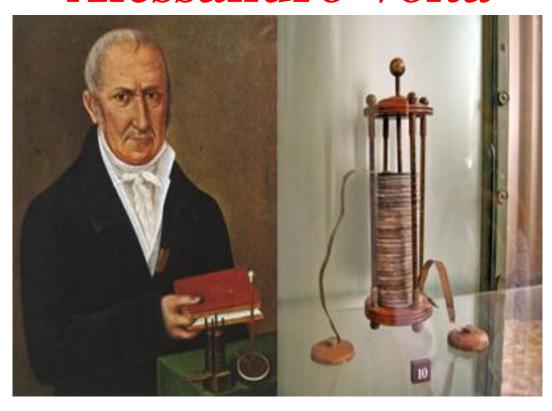
a. Expérience: Réalisons les deux circuits suivants

b. Observation et interprétation

- ✓ L'éclairage de la lampe dans le montage 1 est plus fort que celle de la lampe dans le montage 2. On dit que l'intensité du courant produit par la pile 1 est supérieure à celle de l'intensité du courant produit par la pile 2
- ✓ Les valeurs 9 V et 4,5 V représentent les tensions électriques aux bornes de chaque pile.

c. Conclusion

- ✓ La tension électrique est une grandeur physique, son symbole est U, elle donne naissance au courant électrique.
- ✓ L'unité de la tension électrique est le Volt, de symbole : V
 - ✓ Il existe des multiples et sous multiples de volt


KV	•	•	V	•	•	mV

Application: 1KV = V / 1mV = V

Alessandro Volta

Célèbre physicien et chimiste italien qui a découvert la pile.

On donna son nom a l'unité de tension : le volt.

1745 - 1827

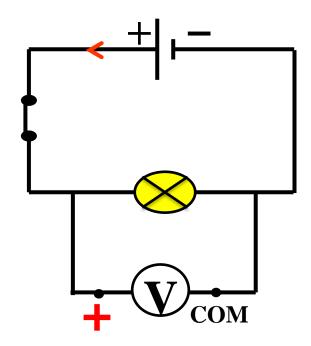
Mesure de tension électrique

Voltmètre

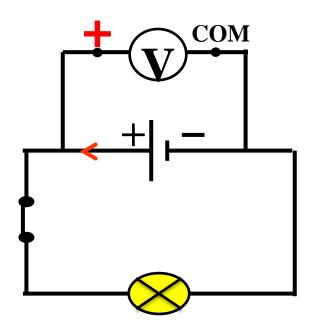
Borne négative (COM)

Echelle de lecture

Calibres


Borne positive (+)

Curseur


Symbole

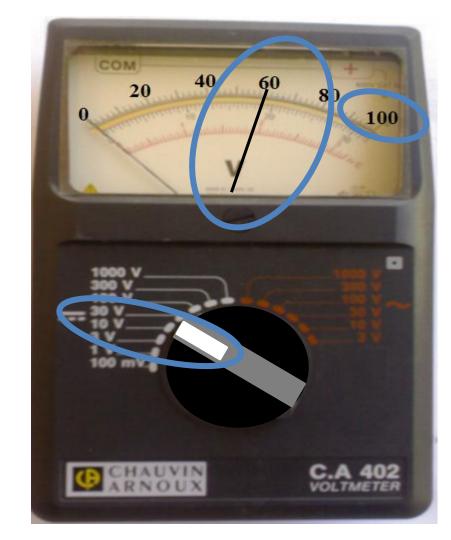
Se branche en dérivation avec le dipôle dont on veut mesurer la tension.

Se branche en dérivation avec le dipôle dont on veut mesurer la tension.

Principe de lecture d'un voltmètre analogique

On calcule la tension électrique U à l'aide de la formule :

$$\mathbf{U} = \frac{\mathbf{C} \times \mathbf{n}}{\mathbf{N}}$$


Exemple:

On a:
$$C = 10 \text{ V}$$

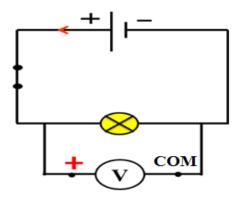
 $N = 100$
 $n = 60$

alors:

$$U = \frac{c \times n}{N} = \frac{10 V \times 60}{100}$$

$$U = 6 V$$

- 2) Mesure de tension électrique
- ✓ Pour mesurer la tension électrique, on utilise un appareil appelé: voltmètre.
 - ✓ On symbolise le voltmètre par :


 V

 COM

 COM

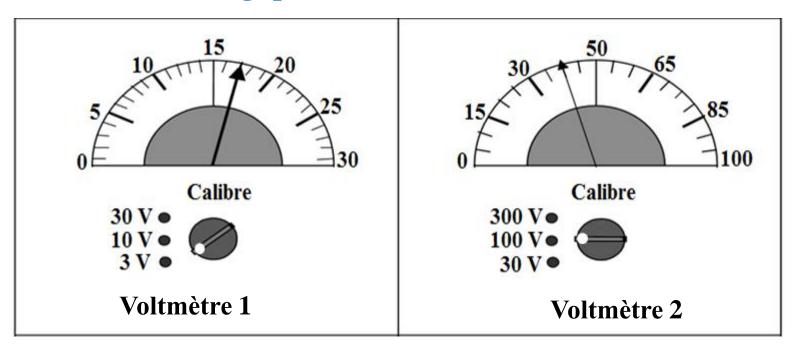
 V
 - ✓ Le voltmètre se branche en dérivation avec le dipôle dont on veut mesurer la tension.

Exemple: Mesure de la tension aux bornes de la lampe

☐ Principe de lecture d'un voltmètre analogique

On calcule la tension électrique U à l'aide de la formule :

$$U = \frac{C \times n}{N}$$


C: Le calibre, c'est la tension maximale qui peut être mesurée pour la position choisie du curseur du voltmètre

n : La position de l'aiguille sur l'échelle de lecture.

N : Le nombre total de graduations de l'échelle de lecture.

Evaluation 3:

Calculer les tensions à partir des schémas d'écran des voltmètres analogiques suivants.

Multimètre

Utilisation d'un multimètre en voltmètre

Remarque:

Pour la mesure de l'intensité ou la tension on utilise aussi un appareil numérique multifonction s'appelle le multimètre.

- ✓ Le voltmètre on utilise les bornes (V et COM).
- ✓ L'ampèremètre on utilise les bornes (10A et COM) ou (mA et COM) suivant les calibres désirés.
- ✓ Pour que la mesure soit la plus précise, il faut que le calibre du multimètre soit immédiatement supérieur à la valeur mesurée.
- ✓ Si la valeur mesurée est supérieure au calibre utilisé, le multimètre affiche 1.
- ✓ Pour afficher une valeur positive, la borne COM du multimètre doit être branchée du côté de la borne moins du générateur

multiples et sous multiples d'une unité

Préfixe	Symbole	Facteur multiplicatif	Puissance
Yotta	Y	1 000 000 000 000 000 000 000 000	1024
Zetta	Z	1 000 000 000 000 000 000 000	1021
Exa	E	1 000 000 000 000 000 000	1018
Péta	Р	1 000 000 000 000 000	10 ¹⁵
Téra	Т	1 000 000 000 000	1012
Giga	G	1 000 000 000	10 ⁹
Méga	M	1 000 000	10 ⁶
kilo	k	1 000	10 ³
hecto	h	100	10 ²
déca	da	10	10 ¹
		1	10°
déci	d	0,1	10-1
centi	С	0,01	10-2
milli	m	0,001	10-3
micro	μ	0,000 001	10-6
nano	n	0,000 000 001	10 ⁻⁹
pico	р	0,000 000 000 001	10-12
femto	f	0,000 000 000 000 001	10-15
atto	а	0,000 000 000 000 001	10-18
zepto	z	0,000 000 000 000 000 000 001	10-21
yocto	у	0,000 000 000 000 000 000 000 001	10-24