

سلسلة رقم

$\mathbb Z$ تمارين : الحسابيات في

- ما هو PGCD لعددين صحيحين طبيعيين متتابعين ؟ معللا جوابك .
- . PGCD(3n+2,2n+1) و 3n+2 استنتج 2n+1 و 2n+3 استنجمال تأليفة خطية ل 2n+3
 - 3 باستعمال خوارزمية إقليدس بين أن العددين 567 و 2854 أوليين فيما بينهما .
- $_{x}$ باستعمال حسابات السؤال السابق استنتج عدين صحيحين نسبيين $_{x}$ و $_{y}$ حيث $_{x}$

.02

 $b = 2n^2 - 7n - 4$ و $a = n^3 - n^2 - 12n$ نعتبر العددين $n \ge 5$ و $a = n^3 - n^2 - 12n$

- -1بعد تعمیل n-4 و -1بین أنهما یقبلان القسمة علی -1
- . $d = PGCD(\alpha, \beta)$ و $\beta = n+3$ و $\alpha = 2n+1$
 - \underline{l} أوجد علاقة بين α و β غير مرتبطة ب \underline{l}
 - بين أن: d قاسم ل 5.
- n-2 بين أن α و β مضاعفين ل 5 إذا وفقط إذا كان $\alpha-2$ مضاعف ل 5 .
 - ين أن: n+1 و n أوليان فيما بينهما .
 - .. .4
 - $_{
 m in}$ حدد ${
 m PGCD}(a,b)$ بدلالة $_{
 m in}$ و ذلك تبعا لقيم
 - . n=12 ثم ل n=11 بنتيجة بالنسبة ل n=11

.03

- ي ثلاثة أعداد صحيح طبيعية متتابعة بين أن مجموع مكعباتها دائما يقبل القسمة على 9 .
 - a+b=182 و $a \wedge b=13$ من $\mathbb{N}^* imes \mathbb{N}^*$ حيث $a \wedge b=13$ و 2

04

- من $\mathbb N$ ؛ تبعا لقيم $\mathbf n$ أوجد باقي القسمة ل $\mathbb N$ على 13 $\mathbb N$
 - . 13 على 13 يقبل القسمة على 13 يقبل القسمة على 13 .
- . 13 العدد $118^{4n+1} + 18^{4n-1}$ يقبل القسمة على 13 بين أن : لكل 13 من 13 العدد

05

- . $1 \le n \le 6$ مع من أجل $n \le 6$. أحسب باقي القسمة الاقليدية ل $n \le 1$.
- . بدون استعمال الترجع بين أن لكل $_{
 m n}$ من $_{
 m N}$ لدينا : $^{
 m 7}$ تقسم $_{
 m -3}^{
 m n+6}$. استنتج أن $_{
 m 3}^{
 m n+6}$ و $_{
 m 3}^{
 m n}$ لهما نفس الباقي بالقسمة على $_{
 m 1}$
 - 31000 على 7 ؟
 - بصفة عامة كيف نحصل على باقي القسمة ل $^{
 m n}$ على 7 لكل $^{
 m n}$ من $^{
 m n}$?
 - . $n \geq 2$ یک $u_n = 1 + 3 + 3^2 + \dots + 3^{n-1} = \sum_{k=0}^{k=n-1} 3^k$ یضع $u_n = 1 + 3 + 3^2 + \dots + 3^{n-1} = \sum_{k=0}^{k=n-1} 3^k$
 - أ- بين أن $\mathbf{u}_{n} = \frac{1}{2}(3^{n}-1)$ ب ما هي قيم \mathbf{u}_{n} حيث \mathbf{u}_{n} تقبل القسمة على 7 ؟ ج ما هي القواسم الموجبة ل \mathbf{u}_{n} ؛

سلسلة رقم

 $\mathbb Z$ تمارين : الحسابيات في

.06

ی PGCD لعددین صحیحین طبیعیین متتابعین (معلا جوابك)

نعتبر n و n+1 عددین متتابعین و n قاسم موجب ل n و n+1 إذن n قاسم لفرقیهما أي n یقسم n+1 عددین متتابعین و n+1 قاسم موجب ل n+1 و منه n+1 و بالتالي و بالتالي n+1 و بالتالي و بالتال

PGCD(n,n+1)=1 : ومنه

. PGCD(3n+2,2n+1) استنتج 3n+2 و 2n+1 و 2n+1

. 3n+2 و 2n+1 لنعتبر d قاسم مشترك ل

$$(3n+2)$$
 و $d \square (3n+2)$ و $d \square (3n+2)$ $d \square (2n+1)$ $\Rightarrow d \square \Big[2(3n+2)-3(2n+1)\Big] \Rightarrow d \square \Big[2(3n+2)-3(2n+1)\Big]$ و $d \square (2n+1)$

PGCD(3n+2,2n+1)=1 : ومنه

3 باستعمال خوارزمية إقليدس بين أن العددين 567 و 2854 أوليين فيما بينهما .

طريقة تطبيق خوارزمية أقليديس لحساب pgcd(a,b): مع : pgcd(a,b) و a=567 عدد أولي) .

$$2854 = 567 \times 5 + 19 \quad (\mathbf{r}_{1} = 19)$$

$$2854 = 19 \times 29 + 16 \quad (\mathbf{r}_{2} = 16)$$

$$29 = 16 \times 1 + 3 \quad (\mathbf{r}_{3} = 3)$$

$$29 = 16 \times 1 + 3 \quad (\mathbf{r}_{4} = 1) \quad (\mathbf{r}_{4} = 1) \quad (\mathbf{r}_{4} = 1)$$

$$29 = 16 \times 1 + 3 \quad (\mathbf{r}_{4} = 1) \quad (\mathbf{r}_{5} = 0)$$

$$29 = 16 \times 1 + 3 \quad (\mathbf{r}_{5} = 0)$$

خلاصة: 1 = PGCD(2854,567)

4 باستعمال حسابات السؤال السابق استنتج عددين صحيحين نسبيين x و y حيث x عددين عددين حدين حديث نسبيين x

 $\overline{\mathbb{Z}}$ تمارين : الحسابيات في

a = 2854 b = 567 $2854 = 567 \times 5 + 19 \quad (r_1 = 19)$ $|567| = |19| \times 29 + |16| \quad (r_1 = 16)$ $19 = 16 \times 1 + 3 \quad (r_3 = 3)$ $16 = 3 \times 5 + 1 \quad (r_4 = 1)$ $\boxed{3} = \boxed{1} \times 3 + \boxed{0} \qquad (\mathbf{r}_5 = \mathbf{0})$

طریقهٔ تحدید معاملی بیزو $1 = 567 \times 6 + 19 \times (-179)$ $=567\times6+\left(\underbrace{2854-567\times5}_{\bullet\bullet}\right)\times\left(-179\right)$ $=567 \times \frac{901}{1} + 2854 \times (-179)$ $1 = 19 \times \left(-5\right) + \left(\underbrace{567 - 19 \times 29}_{56}\right) \times 6$

$$= 567 \times 6 + 19 \times (-179)$$

$$1 = 16 - \left(\underbrace{19 - 16 \times 1}_{3}\right) \times 5 = 19 \times (-5) + 16 \times 6$$

567 imes 901 + 2854 imes (-179) = 1 أي $\mathbf{y} = -179 imes 901 + 2854 imes 67 imes 901$ فلاصة : معاملي بيزو هما

 $1 = 16 - 3 \times 5$

. n-4 بعد تعميل a و b بين أنهما يقبلان القسمة على a

- $a = n^3 n^2 12n = n(n^2 n 12) = n(n^2 16 n + 4) = n(n 4)(n + 4 1) = n(n 4)(n + 3)$ ومنه: n − 4)🛮a) .
- $b = 2n^2 7n 4 = 2n^2 32 7n + 28 = 2(n^2 16) 7(n 4) = (n 4)[2(n + 4) 7] = (n 4)(2n + 1)$

ومنه: n – 4) <mark>(n – 4) .</mark>

n و β غير مرتبطة ب α في اوجد علاقة بين α

 $\alpha = 2n + 1 = 2n + 6 - 5 = 2(n + 3) - 5 = 2\beta - 5$. لاينا $\beta = n + 3$ و $\alpha = 2n + 1 = 2n + 6 - 5 = 2(n + 3) - 5 = 2\beta - 5$. لاينا $\alpha = 2\beta - 5$ و α علاقة بين α و β غير مرتبطة ب

> بين أن: d قاسم ل 5. من خلال:

- $(\beta \cup \alpha)$ و $d\square \alpha : d\square \alpha$ و منه $d\square \alpha : d\square \alpha$ و في $d\square \alpha : d\square \alpha$ و و في $d\square \alpha : d\square \alpha$ و و
 - $\alpha = 2\beta \alpha$ نحصل على $\alpha = 2\beta 5$
 - من خلال (1) و (2) نحصل على d15.

 $\mathbf{5} = \mathbf{d} = \mathbf{PGCD}(\alpha, \beta)$ أي $\mathbf{d} = \mathbf{1}$ أو أيضا: $\mathbf{d} = \mathbf{0}$ أو أيضا: $\mathbf{d} = \mathbf{0}$ أو أيضا: $\mathbf{d} = \mathbf{0}$ أو أيضا

n-2 بين أن α و α مضاعفين ل 5 إذا وفقط إذا كان α مضاعف ل 5 .

سلسلة رقم

\mathbb{Z} تمارين : الحسابيات في

نبين الاستلزام المباشر:

ullet لدينا : n-2 مضاعف ل 5 أي (n-2) ومنه : (n-2)+5 أي (n+3) أي (n+3) ومنه : $oldsymbol{5}$.

• لدينا: n-2 مضاعف ل 5 أي (n-2)5 ومنه : (n-2)5 ومنه (n-2)5 ومنه (2+2)5 و منه : (n-2)5 أي (n-2)5 و بالتالي الاستلزام المباشر صحيح .

⇒ نبین الاستلزام العکسی:

لدينا: α و β مضاعفين ل 5 ومنه α و β و β إذن: $(\alpha-\beta)$ أي $(\alpha+1-(n+3))$ ومنه: $(\alpha-\beta)$. و بالتالي الاستلزام العكسي صحيح .

ومنه : α و β مضاعفین ل 5 إذا وفقط إذا كان α مضاعف ل 5 .

ئ نبین أن: 1+12 و n أولیان فیما بینهما.

 $(n-1)=\delta$ نعتبر δ قاسم مشترك موجب ل n+1 و n-1 و δ ومنه δ ومنه δ ومنه δ قاسم مشترك موجب ل δ و النعتبر δ قاسم مشترك موجب ل δ

1 = PGCD(2n+1,n) و منه : $1 = \delta$ إذن $\delta = 1$

ومنه: n+1 و n أوليان فيما بينهما (أي

.. 4

n بدلالة n و ذلك تبعا لقيم PGCD(a,b) مدد

. $b = 2n^2 - 7n - 4 = (n-4)(2n+1)$ و $a = n^3 - n^2 - 12n = n(n-4)(n+3)$:

$$PGCD(a,b) = PGCD(n(n-4)(n+3),(n-4)(2n+1))$$
 $= (n-4)PGCD(n(n+3),(2n+1))$
 $= (n-4)PGCD(n\beta,\alpha)$
 $= (n-4)PGCD(\beta,\alpha)$; $(n \land \alpha) = 1$
 $5 = d = PGCD(\alpha,\beta)$ \emptyset $1 = d = PGCD(\alpha,\beta)$: $0 \land \alpha \in A$

 $5 = d = PGCD(\alpha, \beta)$: حالة

n-2 مضاعف ل 1 إذا وفقط إذا كان 1 مضاعف ل 1 مضاعف ل 1

 $(k\in\mathbb{N}$ مع n=5k+2 أي α) $k\in\mathbb{N}$ مع n-2=5k مع n=5k+2 مع α

 $PGCD(a,b) = (n-4) \times 5$: فإن $k \in \mathbb{N}$ مع n = 5k + 2 إذن : إذا كان

 $PGCD(a,b) = (n-4) \times 1 = n-4$: فإن $k \in \mathbb{N}$ مع $n \neq 5k+2$ إذن : إذا كان $1 \neq 5k+2$ مع

و منه:

 $PGCD(a,b) = (n-4) \times 5$: فإن $k \in \mathbb{N}$ مع n = 5k + 2

 $PGCD(a,b) = (n-4) \times 1 = n-4$: فإن $k \in \mathbb{N}$ مع $n \neq 5k+2$

. $\mathbf{n}=\mathbf{12}$ ثم ل $\mathbf{n}=\mathbf{11}$ ثم ل

PGCD(a,b)=n-4 و منه n=11=2 imes 5+1 این n=11=2 imes 5+1 این n=11=3 imes 5+1 ای

PGCD(1078,161) = 11 - 4 = 7

بالنسبة ل n=12 الدينا $n=12=2 \times 5+2$ ابن $n=12=2 \times 5+2$ الدينا $n=12=2 \times 5+2$ الدينا $n=12=2 \times 5+2$

. $PGCD(1440,200) = (12-4) \times 5 = 40$

خلاصة و

- بالنسبة ل 11 = n الدينا 1 = PGCD(1078,161) = 11 4 = 7
- $PGCD(a,b) = PGCD(1440,200) = (12-4) \times 5 = 40$ بالنسبة ل n = 12

n+2و n+1 و n+2 انعتبر الأعداد الصحيحة الطبيعية المتتابعة التالية : n+2

 $\left(n+2
ight)^3$ و $\left(n+1
ight)^3$ و n^3 : مكعباتها هي

(1)
$$n^3 + (n+1)^3 + (n+2)^3 = 3n^3 + 9n^2 + 15n + 9 = 9(n^2+1) + 3n(n^2+5)$$
 : ومنه مجموع مکعباتها هو

$$(2)$$
 $9(n^2+1) \equiv 0$ $[9]$ و أي $9(n^2+1)$ يقبل القسمة على 9

إذن يكفي أن نبين أن : $3n(n^2+5)$ يقبل القسمة على 9 أو أيضا نبين أن $n(n^2+5)$ يقبل القسمة على 3.

. $n(n^2+5) \equiv 0$ [3] الذن $n \equiv 0$ [3] عالة 1:

.
$$n(n^2+5)\equiv 0$$
 [3] و بالتالي $n^2=4\equiv 1$ ومنه $n^2=4\equiv 1$ [3] عالم الذي $n\equiv 2$ [3] عالمة $n\equiv 2$

(3)
$$3n(n^2+5) \equiv 0$$
 [9] اذن $n(n^2+5) \equiv 0$ [3] لاينا $n(n^2+5) \equiv 0$ ومنه لكل n من n

.
$$n^3 + (n+1)^3 + (n+2)^3 \equiv 0$$
 [9] من خلال : (1) و (2) و (3) من خلال :

خلاصة: مجموع مكعبات 3 أعداد صحيح طبيعية متتابعة دائما يقبل القسمة على 9.

 $\mathbf{a}+\mathbf{b}=182$ و $\mathbf{a}\wedge\mathbf{b}=13$ و $\mathbf{a}\wedge\mathbf{b}=13$ من $\mathbf{N}^*\times\mathbf{N}^*$ حيث \mathbf{a}

$$\begin{vmatrix} a \wedge b = 13 \\ a + b = 182 \end{vmatrix} \Leftrightarrow \begin{cases} a = 13a', b = 13b', PGCD(a',b') = 1 \\ 13(a'+b') = 182 \end{cases}$$
$$\Leftrightarrow \begin{cases} a = 13a', b = 13b', PGCD(a',b') = 1 \\ a'+b' = 14 \end{cases}$$

بما أن : PGCD(a',b')=1 و a'+b'=14 و a'+b'=14 و بالضبط فرديين .

لتحديد 'a و 'b نعتبر الجدول التالى:

a'	1	3	5	7	9	11	13
b '	13	11	9	7	5	3	1
13a'	13	39	65	PGCD	117	143	169
13b'	169	143	117	$(7,7) \neq 1$	65	39	13

a+b=182 من خلال الجدول الأزواج (a,b) من $^*\times\mathbb{N}^*$ من خلال الجدول الأزواج

(13,169) و (39,143) و (65,117) و (169,13) و (143,39) و (143,39)

سلسلة رقم

$\mathbb Z$ تمارين : الحسابيات في

.
$$5^4 \equiv 1$$
 [13] و $(5^2)^2 \equiv (-1)^2 \equiv 1$ [13] و منه $5^2 \equiv 12 \equiv -1$ [13] و الدينا : $(5^4 \equiv 1)^2 \equiv 12 \equiv -1$ و منه $(5^4 \equiv 1)^2 \equiv 12 \equiv -1$

.
$$k\in\mathbb{N}$$
 و بالتالي : لكل n من n يكتب على شكل $n=4k+r$ مع $n=4k+r$ و بالتالي : لكل

$$5^{n} = 5^{4k+r} = (5^{4})^{k} \times 5^{r}$$
 : إذن

$$5^{4} \equiv 1$$
 $[13] \Rightarrow (5^{4})^{k} \equiv 1^{k}$ $[13]$

$$\Rightarrow (5^{4})^{k} \times 5^{r} \equiv 1^{k} \times 5^{r}$$

$$\Rightarrow 5^{4k+r} \equiv 5^{r}$$
 $[13]$

$$\Rightarrow 5^{n} \equiv 5^{r}$$
 $[13]$

.4:00

.
$$5^{n} \equiv 5^{0} \equiv 1$$
 [13] فإن $r = 0$: إذا كان

.
$$5^{n} \equiv 5^{5} \equiv 5$$
 [13] فإن $r = 1$ كان •

.
$$5^{n} \equiv 5^{2} \equiv 12$$
 [13] فإن $r = 2$ فإن •

.
$$5^n \equiv 5^3 \equiv 8$$
 [13] فإن $r = 3$: إذا كان •

خلاصة : باقي القسمة الممكن ل $^{\rm n}$ على 13 هم 1 أو 5 أو 12 أو 8 .

اذن :

$$2007 \equiv 5 \quad [13] \Rightarrow 2007^{2015} \equiv 5^{2015}$$
 [13]

$$\Rightarrow 2007^{2015} \equiv 5^{503 \times 4 + 3}$$
 [13]

$$\Rightarrow 2007^{2015} \equiv \left(5^4\right)^{503} \times 5^3 \quad [13]$$

$$\Rightarrow 2007^{2015} \equiv (1)^{503} \times 5^3$$
 [13]

$$\Rightarrow 2007^{2015} \equiv 5^3$$
 [13]

$$\Rightarrow 2007^{2015} \equiv 8$$
 [13]

$$\Rightarrow 2007^{2015} - 8 \equiv 0 \qquad [13]$$

ومنه: $8 - 2007^{2015}$ يقبل القسمة على 13.

. 13 من * العدد $^{-18^{4n-1}}$ يقبل القسمة على 13 العدد *

$$18^{4\mathrm{n}-1} \equiv 5^{4\mathrm{n}-1} \equiv 5^{4(\mathrm{n}-1)+3} \quad \text{[13]} \quad 21^{4\mathrm{n}+1} \equiv 5^{4\mathrm{n}+1} \quad \text{[13]} \quad \text{(i.i.)} \quad 18 \equiv 5 \quad \text{[13]} \quad \text{(i.i.)} \quad 18 \equiv 5 \quad \text{[13]} \quad \text{(i.i.)} \quad 18 \equiv 5 \quad \text{(i.i.)} \quad 18 \equiv$$

$$18^{4n-1} \equiv 5^{4n-1} \equiv 5^{4k+3} \equiv 5^3 \equiv 8$$
 [13] و $13^{4n+1} \equiv 5$ [13] الذن:

$$31^{4n+1} + 18^{4n-1} \equiv 5 + 8 \quad [13]$$
 إذن:

$$31^{4n+1} + 18^{4n-1} \equiv 0$$
 [13] " إذن "

. 13 من \mathbb{N}^* العدد $18^{4n+1} + 18^{4n+1}$ يقبل القسمة على 13 \mathbf{n}