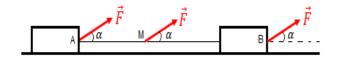
Travail et puissance d'une force المنقل وقدرة قوة

مفعول بعض التأثيرات الميكانيكية على جسم صلب

تؤثر القوى على الجسم الصلب بعدة أنواع من المفاعيل الميكانيكية منها:

- ✓ تحريك جسم صلب: سقوط الأجسام بفعل تأثير وزنها.
- ✓ إحداث دوران جسم صلب: يدور الباب بفعل تأثير القوة التي يطبقها الشخص.
 - ✓ تشويه جسم صلب: تتشوه النفاخة بفعل القوة المطبقة من قبل الأصبع.

١١. شغل قوة أو مجموعة قوى ثابتة مطبقة على جسم في إزاحة


1. مفهوم شغل قوة

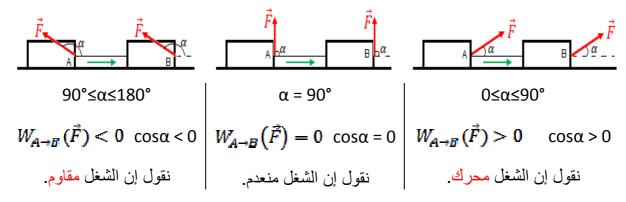
نقول إن قوة مطبقة على جسم ما تشتغل, إذا انتقات نقطة تأثير ها, وغيرت حركة هذا الجسم أو غيرت خصائصه الفيزيائية.

2. شغل قوة ثابتة مطبقة على جسم في إزاحة

القوة الثابتة هي التي تحتفظ بنفس الاتجاه, نفس المنحى, ونفس الشدة طيلة الحركة.

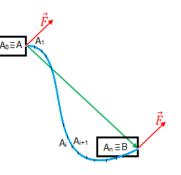
a. حالة الإزاحة المستقيمية

یعبر عن شغل قوة ثابتة \vec{f} خلال انتقال $\underline{\alpha}_{--}$ مستقیمی AB بالعلاقة:


(Joule :J)
$$\longrightarrow W_{A \to B}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB} = F \cdot AB\cos\alpha$$

 $A(x_A;y_A)$ و $\vec{F}(F_x;F_y)$ و $\vec{F}(F_x;F_y)$ و $\vec{F}(x_B;y_B)$ و $\vec{F}(x_B;y_B)$ و $\vec{F}(x_B;y_B)$

$$W_{A\to B}(\vec{F}) = \vec{F}.\overrightarrow{AB} = F_x(x_B - x_A) + F_y(y_B - y_A) \iff$$

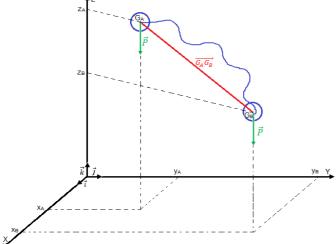

طبيعة شغل قوة ثابتة

 $-1<\cos \alpha<1$; F >0 ; AB >0 حيث: $W_{A\to B}(\vec{F})=\vec{F}.\overrightarrow{AB}=F.AB\cos \alpha$ الدينا: α

b. حالة الإزاحة المنحنية

نقسم المسار المنحني إلى أجزاء صغيرة يمكن اعتبارها مستقيمية.

نعبر عن الشغل الجزئي الذي تنجزه القوة \vec{f} خلال انتقال


$$\delta W_i(\vec{F}) = \vec{F}.\overrightarrow{dl_i}$$
 :جزئي $\overrightarrow{dl_i} = \overrightarrow{A_iA_{i+1}}$ بالعلاقة

أما شغل القوة \vec{f} عند انتقال نقطة تأثير ها من A إلى B فهو مجموع الأشغال الجزئية:

$$W_{A\to B}(\vec{F}) = \vec{F}.\overrightarrow{dl_0} + \vec{F}.\overrightarrow{dl_1} + \dots + = \vec{F}.\overrightarrow{dl_1} + \dots + \vec{F}.\overrightarrow{dl_n} = \vec{F}.\sum_i \overrightarrow{dl_i}$$

$$W_{A\to B}(\vec{F}) = \vec{F}.\overrightarrow{AB} \iff \longrightarrow$$

إذن نقول إن شغل قوة ثابتة مستقل عن المسار الذي تتبعه نقطة تأثيرها, إذ يرتبط فقط بموضعها البدئي والنهائي.

3. تطبيق: شغل وزن جسم

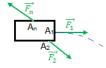
بالنسبة لانتقال لا يتجاوز بضع كيلومترات (قريب من سطح الأرض), يمكن اعتبار مجال الثقالة منتظما.

عند انتقال مركز قصور الجسم من

الموضع G_A إلى G_B , ينجز $\overrightarrow{\mathbf{f}}$ شغلا:

$$W_{G_A \to G_B}(\vec{P}) = \vec{P}. \overline{G_A G_B}$$

$$ec{P}=-\mathrm{mg}ec{\mathrm{k}}$$
 الدينا:


$$\overrightarrow{G_A G_B} = (x_B - x_A)\overrightarrow{i} + (y_B - y_A)\overrightarrow{j} + (z_B - z_A)\overrightarrow{k}$$

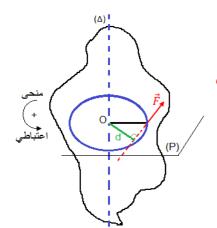
$$W_{\mathsf{G}_{\mathsf{A}}\to\mathsf{G}_{\mathsf{B}}}(\overrightarrow{\mathbf{P}})=\mathrm{mg}(\mathsf{z}_{\mathsf{A}}-\mathsf{z}_{\mathsf{B}})$$
 وبالتالي: $W_{\mathsf{G}_{\mathsf{A}}\to\mathsf{G}_{\mathsf{B}}}(\overrightarrow{\mathbf{P}})=-\mathrm{mg}(\mathsf{z}_{\mathsf{B}}-\mathsf{z}_{\mathsf{A}})$

خلاصة: Y_{A} لا يرتبط شغل وزن جسم إلا بالأنسوب Y_{A} للموضع البدئي والأنسوب Y_{B} للموضع النهائي لمركز قصور الجسم.

ملحوظة: يتعلق تعبير شغل وزن جسم بمنحى المحور OZ, إذا تم اختيار منحى المحور نحو الأسفل يصبح هذا التعبير:

$$W_{\mathbf{G}_{A} \to \mathbf{G}_{B}}(\vec{P}) = mg(\mathbf{z}_{B} - \mathbf{z}_{A})$$

4. شغل مجموعة قوى ثابتة مطبقة على جسم صلب في إزاحة


لدينا الجسم في إزاحة:

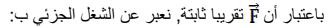
$$W_{A \to B} = \overrightarrow{F_1} \cdot \overrightarrow{AB} + \overrightarrow{F_2} \cdot \overrightarrow{AB} + \cdots + \overrightarrow{F_n} \cdot \overrightarrow{AB} = (\overrightarrow{F_1} + \overrightarrow{F_2} + \cdots + \overrightarrow{F_n}) \overrightarrow{AB}$$

$$\vec{F} = \sum_{i=1}^{n} \vec{F_i}$$
 حيث: $W_{A \rightarrow B} = \vec{F} \cdot \vec{AB}$ وبالتالي:

تمرين تطبيقي: نقوم بسحب جسم صلب ذي كتلة m=250~Kg نحو الأعلى فوق مستوى مائل بزاوية $\alpha=30^\circ$ بالنسبة للمستوى الأفقى. فيقطع مركز ثقله المسافة $\alpha=30^\circ$

- 1. أنجز تبيانة موضحة لمعطيات التمرين.
- .g = 10 N.Kg $^{-1}$ نعطي . $W_{A \rightarrow B}(\overrightarrow{P})$.2

III. شغل قوة عزمها ثابت مطبقة على جسم صلب في دوران حول محور ثابت


1. عزم قوة بالنسبة لمحور دوران ثابت (تذكير)

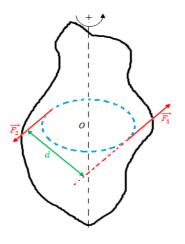
صيغة عزم قوة $ec{f}$ بالنسبة لمحور (Δ) متعامد مع خط تأثير ها هي:

$$(N.m) \longrightarrow M_{\triangle}(\overrightarrow{F}) = \underset{(N)}{+} F.d$$

2. شغل قوة ذات عزم ثابت

عندما يدور الجسم بزاوية صغيرة $d\theta$, تقطع نقطة تأثير القوة \vec{f} قوسا صغيرا يمكن عندما يدور الجسم بزاوية صغيرة $d\vec{l}$.

$$\delta W = F. dl. \cos \alpha \iff \delta W = \vec{F}. \vec{dl}$$


$$\delta W = F.R\coslpha.d heta \Longleftrightarrow dl = Rd heta$$
نعلم أن:

 $M_{\Lambda}(\overrightarrow{F}) = F \cdot d$ ولدينا $d = R \cos \alpha$ دسب الشكل لدينا:

$$\delta W = M_{\Delta}(\vec{F}).d\theta$$
 :نِن

عند دوران الجسم بزاوية $\Delta \theta$, تنجز القوة $\vec{\mathbf{f}}$ شغلا مساويا لمجموع الأشغال الجزئية

$$W(\vec{F}) = M_{\Delta}(\vec{F}) \sum_{\cdot} d\theta$$
 : فإن $M_{\Delta}(\vec{F}) = ct$ بما أن $W(\vec{F}) = \sum_{\cdot} M_{\Delta}(\vec{F}) \cdot d\theta$ وبالتالي: $W(\vec{F}) = M_{\Delta}(\vec{F}) \cdot \Delta\theta$

١٧. شغل مزدوجة عزمها ثابت

1. عزم مزدوجة قوتين (تذكير)

$$M_{\Delta}(\overrightarrow{F_1}; \overrightarrow{F_2}) = \pm F.d$$

 $F_1 = F_2 = F$: الشدة المشتركة للقوتين $F_2 = F_3$.

d: المسافة الفاصلة بين خطى تأثير هما.

تعمیم: ت

المزدوجة مجموعة قوى بحيث:

✓ يكون مجموع متجهاتها منعدما

√ لها عزم غير منعدم.

أمثلة: مزدوجة محرك, مزدوجة الكبح, مزدوجة اللي.

2. شغل مزدوجة ذات عزم ثابت

بإتباع نفس المنهجية السابقة (حالة خاصة مزدوجة قوتين) نبين أن الشغل الجزئي لمزدوجة

$$\delta W = M_{\Lambda}.d$$
 : هو

 $W=\sum \delta W_i$ بالنسبة لدوران بزاوية $\Delta \Phi$, يكون شغل المزدوجة هو $W=\sum \delta W_i$ نعلم أن العزم ثابت وبالتالي:

تمرین تطبیقی: لتشغیل محرك مضخة ماء نلف خیطا غیر مدود علی اسطوانة المحرك, ذات الشعاع $|\vec{F}|| = 100N$ الشعاع $|\vec{F}|| = 100N$ ونقوم بسحبه بتطبیق قوة $|\vec{F}|| = 100N$ أحسب شغل هذه القوة عند انجاز الأسطوانة 20 دورة.

٧. قدرة قوة

القدرة هي مفهوم فيزيائي يربط بين الشغل المنجز والمدة اللازمة لانجازه.

1. القدرة المتوسطة

$$P_m = rac{W_{A op B}(ilde{f})}{\Lambda t}$$
 نسمي القدرة المتوسطة المقدار:

(J) بالشغل المنجز ب $W_{A op B}(ec F)$ عيث:

 Δt : المدة اللازمة لانجاز هذا الشغل ب: (s).

.Watt (W) :بالقدرة المتوسطة للقوة $ec{f}$. ب P_m

2. القدرة اللحظية

$$P = \frac{\delta W}{dt}$$
 نعبر عن القدرة اللحظية بالعلاقة:

a. حالة جسم في إزاحة

إذا كان جسم في إزاحة ومطبق عليه قوة أو عدة قوى ثابتة \vec{f} .

$$P = \vec{F}.\vec{v} \iff P = \vec{F}.rac{d\vec{l}}{dt}$$
 (فإن: $\delta W = \vec{F}.d\vec{l}$) فإن:

b. حالة جسم في دوران حول محور ثابت

إذا كان جسم في حالة دوران حول محور ثابت ومطبق عليه قوة أو مزدوجة ذات عزم ثابت.

$$P = M_{\Delta}. \omega \iff P = M_{\Delta}. rac{d heta}{dt}$$
 اذن $\delta W = M_{\Delta}. d heta$ فإن: