Energie thermique – Transfert thermique الطاقة الحرارية – الانتقال الحراري

[- الانتقال الح

1- تعریف

عنــد تمــاس جسميــن، درجتـا حـرارتهمــا مختلفتــان، تنخفـض درجـة حـرارة الجسـم الساخـن بينمـا تـرتفـع درجـة حـرارة الجسـم البـارد. نقـول أنه حدث انتقال للطاقة بالحرارة بين هذيتن الجسمين نسميه الانتقال الحراري.

2- سبل الانتقال الحرارى:

الانتقال الحراري بالإشعاع	الانتقال الحراري بالحمال	الانتقال الحراري بالتوصيل
تسخن رمال الشواطئ إثر تعرضها لأشعة	عند تسخين ماء في إناء، نلاحظ عند	عند لمس إناء معدني به ماء ساخن نشعر
الشمس خلال فصل الصيف. وبما أنه لا	درجة حرارة معينة أن الماء يتحرك	بحرارة على جلد اليد وعند وضعه في إناء
يحدث أي انتقال حراري بين الشمس والأرض	من أسفل الإناء حيث درجة الحرارة	به ماء بارد، ترتفع درجة حرارة هذا
لوجود فراغ بينهما وعليه فانتقال الطاقة	مرتفعة نحو الأعلى، نتحدث عن	الأخير، نتحدث عن انتقال حراري
بينهما يتم على شكل موجات كهرمغنطيسية	انتقال حراري بالحمل.	بالتوصيل.
- الانتقال الحراري بين الشمس والأرض يتم	- الانتقال الحراري بالحمــل انتقال	- الانتقال الحراري بالتوصيل هو انتقال
بواسطة الإشعاع.	للطاقة بالحرارة يصاحبه انتقال لمادة.	للطاقة بالحرارة يحدث عبر أجسام مادية
		موصلة للحرارة دون نقل لمادة.

3- مفاعيــل الانتقــال الحراري

تسخيـن ماء مقطر يؤدي إلى ارتفاع درجـة حرارتـه تدريجيا إلـي أن تصـل القيمـة C°100 حيث تستقر ويبدأ المـاء فـي التبخـر. - يمكن للانتقال الحراري أن يرفع درجة حرارة جسم أو يحدث تغييرا في الحالـة كوكب الفيزياءـة لجسـم خالص.

II- الانتقال الحراري والطاقة الحرارية:

1- الطاقة الحرارية (كمية الحرارة)

أثناء الانتقال الحراري يتم انتقال الطاقة بالحرارة بين جسمين وتسمى هذه الطاقة بالطاقة الحرارية أو تجاوزا بكمية الحرارة. نرمز لها بالحرف Q ونعبر عنها بالعلاقة $Q{=}m.c.(heta_f{-} heta_i)$ ووحدتها في النظام العالمي لوحدات هي الجول (J).

2- الحرارة الكتلية والسعة الحرارية

السعــة الحراريــة	الحرارة الكتليــة
نسمى الجداء $m.c$ السعة الحرارية للجسم ويمثل كمية	تساوي الحرارة الكتلية (أو السعة الحرارية الكتلية) c لجسم ما
الحرارة التي يجب توفيرها لكتلة m من جسم لرفع درجة	كمية الحرارة التي يجب توفيرها لوحدة كتلة هذا الجسم (1kg)
حرارتها بالقيمة °1.	وذلك لرفع درجة حرارته بالقيمة $^{\circ}$ 1.
و حدتها : J/°C	و حدتها J/Kg.°C

3- التصوازن الحراري

إذا كان الانتقال الحراري يحدث دون تسربات حرارية (وسطكظيم) ، بين جسمين مختلفين، يفقد الجسم الساخن كمية حرارة تساوي كمية الحرارة التي يكتسبها الجسم البارد. وإذا استمر انتقال الحراري بين الجسمين مدة كافية تتساوى فيها درجتا حرارتيهما، نقول

	إنهمنا في نوارن حراري.	
	إلهمنا في نوارن حراري. 4- الانتقال الحراري مع تغير الحالة الفيزيائية:	
التبخر و التجمد	ا لانصهار و التجمد	
الحرارة الكامنة L_{p} لتبخير جسم صلب خالص، هي كمية الحرارة	الحرارة الكامنة الكتلية L_g لانصهار جسم صلب خالص، هي	
التي يجب توفيرها لوحدة كتلة هذا الجسم (1kg)، عند درجة حرارة التبخر تحت ضغط معين، لتحويله كليا إلى بخار.	كمية الحرارة التي يجب توفيرها لوحدة كتلة هذا الجسم	
التبخر تحت ضغط معين، لتحويله كليا إلى بخار.	(1kg)، عند درجة حرارة الانصهار وتحت ضغط معين، لتحويله كليا إلى الحالة السائلة.	
$L_l = -L_f$ الحرارة الكامنة الكتابية للإسالية هذا الجسم هي :		
<u> </u>	$L_{\mathbf{sw}} = -L_{\mathbf{f}}$: الجسم الكتابية لتجمد الجسم الجسم	
Ü كمية الحرارة Q اللازمة لتحويل كتلة m من الجسم الخالص كليا من الحالة السائلة إلى الحالة الغازية عند نفس درجة الحرارة	كمية الحرارة Q اللازمة لتحويل كتلة m من الجسم الخالص	
$Q=m.L_{v}$. وضغط ثابت تساوي	كليا من الحالة الصلبة إلى الحالة السائلية على نفس درجة	
وصغط تابت نساوي : ١٠	$Q=m.L_f$ الحرارة وضغط ثابت تساوي	
TTT الطاقة الداخل في الانتقال الطاقي .		

يعتبر الشغل والحرارة والإشعاع أشكالا لانتقال الطاقة، وتتعلق الطاقة الداخلية لمجموعة بالتبادلات التي تحدث بين هذه المجموعة والوسط الخارجي.

- إذا كان التبادل الطاقع بين المجموعة والوسط الخارجي يتم بالشغل فقط، فإن تغير الطاقة الداخلية لمجموعة هو:
 - $\mathbf{W} = \Delta U = \mathbf{W}$ حيث \mathbf{W} هي الطاقة المتبادلة بالشغل.
- إذا كان التبادل الطاقي بين المجموعة والوسط الخارجي يتم بالحرارة فقط، فإن تغير الطاقة الداخلية لمجموعة هو: ميث \mathbf{O} هي الطاقة المتبادلة بالحرارة. $\Delta U = Q$
- إذا كان التبادل الطاقي بين المجموعة والوسط الخارجي يتم بالشغل وبالحرارة وبالإشعاع في أن واحد، فإن تغير الطاقة الداخلية لمجموعة هو $Q_t: \Delta U = W + Q_t$ حيث W هي الطاقة المتبادلة بالشغل و Q_t هي الطاقة المتبادلة بالحرارة وبالإشعاع. نص المبدأ الأول للترموديناميك:

 $\Delta U = W + Q$ يساوي تغير الطاقة الداخلية لمجموعة، أثناء تحول ما، مجموع الطاقات المتبادلة مع الوسط الخارجي.