


الامتحان الوطني الموحد للبكالوريا المسالك الدولية – خيار فرنسية الدورة الاستدراكية 2016 -عناصر الإجابة -

4°XNV₹4 I NEÃO₹Θ ₹°E°I°O 1 80XE 1 90KE 1 40°E والتكوين الممنى الممنى المهند المالالله ١١١٤٥٥ ٨

المملكة المفربية وزارة التربية الولهنية

RR28F

المركز الوطني للتقويم والامتحانات والتوجيه

EXERCICE I (7 points)				
	question	Eléments de réponse	Barème	Référence de la question dans le cadre de référence
Partie I	1	cathode	0,25	- Reconnaitre l'électrode à laquelle se produit la réaction d'oxydation (anode) ou l'électrode à laquelle se produit la réaction de réduction (cathode), connaissant le sens du courant imposé par le générateur.
	2	$Mg^{2+} + 2e^{-} \rightleftharpoons Mg$ $2Cl^{-} \rightleftharpoons Cl_{2(g)} + 2e^{-}$ $Mg^{2+} + 2Cl^{-} \rightarrow Mg + Cl_{2(g)}$	0,25 0,25 0,25	- Ecrire les équations des réactions aux électrodes (avec double flèche) et l'équation bilan (simple flèche) lors d'une électrolyse.
	3	expression littérale $m = 27, 2g$	0,25 0,25	- Etablir la relation entre les quantités de matière des espèces formées ou consommées, l'intensité du courant et la
	4	expression littérale $v = 76,8L$	0,25 0,25	durée de l'électrolyse. Utiliser cette relation pour déterminer d'autres grandeurs (l'avancement de réaction, variation de masse, volume d'un gaz).
	1.1	catalyseur	0,25	Savoir que le catalyseur est une espèce qui augmente la vitesse d'une réaction chimique sans modifier l'état d'équilibre du système.
,	1.2	Lente et limitée	0,25x2	- Connaitre les caractéristiques des réactions d'estérification et d'hydrolyse (lentes et limitées).
	1.3	L'équation de réaction	0,5	- Écrire les équations des réactions d'estérification et d'hydrolyse.
Partie II	1.4	K ≈0,24	0,5	- Savoir que le quotient de réaction $Q_{r,éq}$, associée à l'équation de la réaction, à l'état d'équilibre d'un système, prend une valeur, indépendante des concentrations, nommée constante d'équilibre K.
	2.1	CH_3COO^- ; ion éthanoate	0,25x2	-Écrire l'équation de la réaction d'un anhydride d'acide avec un alcool et celle de l'hydrolyse basique d'un ester.
	2.2	Le tableau d'avancement	0,5	- Dresser le tableau d'avancement d'une réaction et l'exploiter.
	2.3.1	méthode $\sigma_{1/2} \approx 0.17 S.m^{-1}$	0,5 0,25	- Exploiter les différentes courbes d'évolution de la quantité de matière d'une espèce chimique, sa concentration,

حممه الصفحة	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 – عناصر الإجابة
RR28F	
الصفحة 2 4 RR28F	 مادة: الفيزياء والكيمياء – مسلك العلوم الفيزيائية – المسالك الدولية (خيار فرنسية)

			l'avancement de réaction, sa conductivité électrique, sa conductance, la pression ou le volume d'un réactif ou d'un produit.
2.3.2		0,5 0,25	- Définir le temps de demi-réaction - Exploiter des documents expérimentaux pour déterminer la constante de temps.
2.3.3	expression de la vitesse $v \approx 0.52 mol. \text{m}^{-3} . \text{min}^{-1}$	0,5 0,25	 Connaître l'expression de la vitesse volumique de réaction. Déterminer graphiquement la valeur de la vitesse volumique de réaction.

EXERCICE II (2,5 points)				
question	Eléments de réponse	Barème	Référence de la question dans le cadre de référence	
1.	la particule X est un électron désintégration β ⁻	0,25 0,25	 Ecrire l'équation d'une réaction nucléaire en appliquant les deux lois de conservation. Reconnaître le type de radioactivité à partir de l'équation d'une réaction nucléaire. 	
2.	méthode E _{IIb} ≈ 5,51 MeV	0,5 0,25	- Calculer l'énergie libérée (produite) par une réaction nucléaire : $E_{libérée} = \Delta E $.	
3.	méthode $\mathscr{E} \approx 1,32.10^{-12} \text{ J/nucléon}$	0,5 0,25	Définir et calculer l'énergie de liaison par nucléon et l'exploiter.	
4.	$v = 3.31.10^{20} \text{Hz}$	0,5	- Connaître et exploiter la relation $\Delta E = h.v$.	

RR28F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 – عناصر الإجابة - مادة: الفيزياء والكيمياء – مسلك العلوم الفيزيانية – المسالك الدولية (خيار فرنسية)

	EXERCICE III (5 points)				
	question	Eléments de réponse	Barème	Référence de la question dans le cadre de référence	
	1.	(C_1) Représente $u_{PN}(t)$	0,25	- Exploiter des documents expérimentaux pour reconnaître les tensions observées.	
		(C_2) Représente $u_R(t)$	0,25	pour reconnante les tensions observees.	
	2.	Expression littérale $I_p = 0,25 A$	0,25	- Reconnaître et représenter les courbes de variation, en fonction du temps, de	
		p	0,25	l'intensité du courant $i(t)$ passant dans la bobine et les grandeurs qui lui sont liées et	
	3.	Vérification de la valeur de r	0,25	les exploiter Exploiter les données expérimentales, les	
				analyser et en tirer des conclusions.	
	_	Equation différentielle :	0,5	- Etablir l'équation différentielle et vérifier	
tie I	4.	$\frac{di}{dt} + \frac{(R+r)}{L}i = \frac{E}{L}$ $A = \frac{E}{R+r}$		sa solution lorsque le dipôle RL est soumis à un échelon de tension.	
Partie I	5.	$A = \frac{E}{}$		- Déterminer l'expression de l'intensité du	
		R+r	2 x 0,25	courant $i(t)$ lorsque le dipôle RL est soumis à un échelon de tension	
		$\tau = \frac{L}{(R+r)}$	2 A 0,23	a un cención de tensión	
	6.	$\tau = 3 \mathrm{ms}$	0,25	- Exploiter des documents expérimentaux pour déterminer la constante de temps.	
	7.	$L = \tau . (R + r)$	0,25	- Connaître et exploiter l'expression de la	
		$L = 0.144 \mathrm{H}$	0,25	constante de temps	
	8.	$\mathscr{E} = \frac{1}{2} \operatorname{L} i^2$	0,25	- Connaître et exploiter l'expression de	
		_	0.25	l'énergie magnétique emmagasinée dans une bobine	
		$\mathscr{E} \simeq 0.7 \mathrm{mJ}$	0,25	0000	
	1.1.	Recevoir et sélectionner l'onde	0,25	- Connaître le rôle sélectif du circuit	
	1.2.	49,9 pF	0.5	bouchon LC pour la tension modulée Reconnaître les constituants essentiels qui	
ш	1.4.		0,5	constituent le montage d'un récepteur radio	
tie				AM, et leurs rôles dans la démodulation.	
Partie II	2.1.	$[R_2.C_2] = [T]$	0,25	- Utiliser les équations aux dimensions.	
	2.2.	5kΩ	0,5	- Connaître les conditions permettant	
			0,5	d'obteniret une détection d'enveloppe de bonne qualité.	
				bonne quante.	

RR28F

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2016 - عناصر الإجابة - مادة: الفيزياء والكيمياء - مسلك العلوم الفيزيائية - المسالك الدولية (خيار فرنسية)

EXERCICE IV (5,5 points)				
question	Eléments de réponse	Barème	Référence de la question dans le cadre de référence	
1.1	méthode l'équation différentielle	0,5 0,25	- Connaître et appliquer la relation fondamentale de la dynamique dans le cas de la rotation autour d'un axe fixe pour établir l'équation différentielle du mouvement et la résoudre.	
1.2	La dimension cherchée : T^{-2}	0,5	- Utiliser les équations aux dimensions.	
1.3	$m\acute{e}thode$ $C_{min}=mgL$	0,5 0,25	 Déterminer la nature du mouvement du pendule de torsion, écrire et utiliser les équations du mouvement . Connaître la signification des termes intervenant dans l'expression de l'équation horaire du pendule de torsion; les déterminer à partir des conditions initiales. 	
1.4.1	T = 1s $\theta_{max} = 0.15 \text{ rad}$ $\phi = 0$	0,25 0,25 0,25	- Connaître la signification des termes intervenant dans l'expression de l'équation horaire $\theta(t)$ du pendule de torsion; les déterminer à partir des conditions initiales exploiter les diagrammes $\theta(t)$ pour déterminer les grandeurs qui caractérisent le mouvement du pendule dans le cas de faibles oscillations	
1.4.2	méthode $g = \frac{C}{mL} - \frac{4\pi^2.L}{T^2}$ app.num : $g \approx 9.82 \text{ms}^{-2}$	0,5 0,25 0,25	- Connaître et exploiter l'expression de la période propre et la fréquence propre du pendule dans le cas des petites oscillations.	
2.1	$E_{\rm m}=10,8{\rm mJ}$	0,5	- Exploiter les diagrammes d'énergie.	
2.2	$E_p = 4.8 \mathrm{mJ}$	0,5	- Connaître et exploiter l'expression de l'énergie mécanique du pendule .	
2.3	$\left \dot{\theta} \right = \sqrt{\frac{2.E_{m}}{m.L^{2}}}$ $\left \dot{\theta} \right \approx 9, 4.10^{-1} \text{rad. s}^{-1}$	0,5 0,25	 Connaître et exploiter l'expression de l'énergie potentielle de torsion et de pesanteur. Exploiter la conservation de l'énergie mécanique du pendule dans le cas de faibles oscillations. 	