

الامتحان الوطني الموحد للبكالوريا ___المسالك الدولية — خيار أنجليزية

الدورة الاستدراكية 2018 -عناصر الإجابة -

RR28E

3

7

المركز الوطنى للتقويم والإمتحانات والتوجيه

المادة الفيزياء والكيمياء مدة الإنجاز شعبة العلوم التجريبية : مسلك العلوم الفيزيائية – خيار أنجليزية المعامل الشعبة أو المسلك

	EXERCISE I (7 points)				
	Questions	Answers	Marking	Question reference	
			scale	In the framework	
	1	$Q_{r,i}=1$	0,5	-Calculate the value of the quotient of reaction	
	2	Direction (1)	0,5	Q _r of a chemical system in given state.	
				-Determine the direction of spontaneous	
	3	At the cathode:	0,5	evolution of a chemical system.	
	3	$Cu_{(aq)}^{2+} + 2e^{-} \longleftrightarrow Cu_{(s)}$		-Write the half-equation that occurred in each	
-		$Cu_{(aq)}^{2+} + 2e^{-} \longleftrightarrow Cu_{(s)}$ $m(Cu) = \frac{I.\Delta t. M(Cu)}{2.F}$ $m(Cu) \approx 1,78 \text{ g}$	0,5	electrode (use double arrows) and write the	
Part I		$m(Cu) = \frac{1}{2} \frac{1}{E}$,	overall equation of the reaction during the battery functioning (use one arrow).	
=		$m(Cu) \sim 1.79 \text{ G}$		-Establish the relationship between the amount	
		m(Cu)≈1,70 g	0,25	of substance of chemical specie produced or	
	4			consumed, the current intensity and the operating	
				duration of a battery. Use this relationship to	
				determine other quantities (quantity of charge,	
				progress of the reaction, change of the mass).	
				-Know that a catalyst is a chemical specie that	
	1.1	Catalyst (it speeds up the	0,5	increases the rate of a chemical reaction without	
	1.1	reaction)		changing the equilibrium state of the system.	
				-Know the characteristics of esterification and	
	1.2	Slow and non-complete	0,25x2	hydrolysis: non- complete and slow	
		(limited)		transformations.	
	1.3	Set-up (C)	0,5	-Know the experimental set-up of an acid-base	
	1.5			titration.	
	1.4	Equation of reaction	0,75	- Write the esterification and the hydrolysis	
Part II		-Expression of K.	0,5	equation. - Know that, the reaction quotient in equilibrium	
t II	1.5	-K = 0.25	0,3	$Q_{r,eq}$, associated to the reaction equation of a	
		-, -	ĺ	chemical system, takes a value independent of	
				concentrations, called equilibrium constant K.	
		$A_{(\ell)}$: CH_3 - $OH_{(\ell)}$	0,25	-Write the equation of the reaction of an	
	2.1	$B_{(aq)}^-: CH_3-CO_{2(aq)}^-$	0,25	anhydrous acid with an alcohol and that of the	
		(aq)3 = 2(aq)		basic hydrolysis of an ester.	
		- Method	0,5	-Exploit the different curves of time-evolution of	
	2.2.1	$- G_{1/2} \approx 17 \mathrm{mS}$	0,25	the following:	
				the amount of substance of a chemical specie, its	
-		•			

فحة	الص
3	

RR28E

الامتحان الوطني الموحد للبكالوريا – الدورة الاستحراكية 2018 – عناصر الإجابة – ماحة: الفيزياء والكيمياء – هعبة العلوم التجريبية مسلك العلوم الفيزيائية – خيار أنجليزية

			concentration, the progress of a reaction, conductivity, conductance, pressure and volume.
2.2.2	Let consider any value of $t_{1/2}$ in the following interval $17 \min \le t_{1/2} \le 18 \ min$	0,5	-Define the half-life $t1/2$ of a chemical reaction. -Determine the half-life $t_{1/2}$ of the chemical reaction graphically or through exploiting the

EXERCISE II (2,5 points)					
Questions	Answers	Marking scale	Question reference In the framework		
1.	- Equation of disintegration - The radioactivity's type is β ⁻	0,5 0,25	 - Know and exploit the two laws of conservation. - Write the equation of a nuclear reaction by applying the two conservation laws. - Recognise the type of radioactivity using the equation of a nuclear reaction. 		
2.	- Method - $E_{pro} \simeq 2,8.10^{-2} MeV$	0,5 0,25	- Calculate the energy released (produced) by a nuclear reaction: $E_{pro} = \Delta E $.		
3.	- Method - $a_1 \approx 7,5.10^5 Bq$	0,5 0,5	- Know and exploit the law of the radioactive decay, and exploit its curve Know that 1Bq is equal to one decay per second Exploit the relationships between τ , $t_{1/2}$ and λ (decay constant).		

	EXERCISE III (4,5 points)				
	Questions	Answers	Markin g scale	Question reference In the framework	
	1.	How to connect the datalogger to monitor the voltage $u_L(t)$	0,25	Know how to connect an oscilloscope and a datalogger to monitor different voltages.	
	2.	Differential equation : $\frac{di}{dt} + \frac{R}{L}i = \frac{E}{L}$	0,5	- Find out the differential equation and verify its solution when the RL dipole is submitted to a step voltage.	
	3.	$u_L(t) = E.e^{-\frac{R.t}{L}}$	0,5	 Determine the current's intensity expression i(t) when the RL dipole is submitted to a step voltage, and deduce the voltage 	
Part I	4.	$u_{L}(\tau) = E.e^{-1} = 0.37.E$ $u_{L}(\tau) \approx 3.3 V$	0,25 0,25	expressions between the inductor's terminals and the resistor terminals.	
	5.	$\tau = 1 \text{ ms}$ $L \approx 10^{-2} \text{ H}$	0,25 0,5	 - Know and exploit the time-constant expression. - Exploit experimental documents in order to determine the time-constant. 	
	6.	- Expression of E_m - $E_m \approx 1,6.10^{-3} J$	0,5 0,25	- Know and exploit the expression of the magnetic energy stored in a inductor.	

ä	سفح	الد
$\overline{}$	3	
າ `	`\	

RR28E

الامتحان الوطني الموحد للبكالوريا – الدورة الامتحراكية 2018 – عناصر الإجابة – ماحة: الغيزياء والكيمياء – هعبة العلوم التجريبية مسلك العلوم الغيزياء والكيمياء ب

Part II	1.	Answer : C	0,5	 Know the stages of demodulation. Know the conditions allowing to get an amplitude modulation and a high quality detection envelope. Know the selective role of the LC (bung
	2.	Answer: B	0,5	
	3.	Answer: C	0,25	circuit) for the modulated voltage. - Recognise the essential components required to assemble an AM radio, and their roles in the demodulation. - Know the role of different used filters.

	EXERCISE IV (6 points)				
	Questions	Answers	Marking	Question reference	
	Questions		scale	In the framework	
	1	Path (1): O^{2-}	0,25	- Know the characteristics of Lorentz force and the	
	1.	Path (2): He ²⁺	0,25	rule to determine its direction.	
		- Newton's second law	0,25	- Apply Newton's second law in the charged	
	2.	- Using Frenet frame	0,25	particle case inside a uniform magnetic field, with	
	2.	- Uniform motion	0,25	\overrightarrow{B} perpendicular to \overrightarrow{v}_0 in order to determine the	
Pa		-Circular motion	0,25	type of motion.	
Part I		$\frac{R_{O^{2-}}}{} = 4$	0,5	* 1	
, ,	3.	$\frac{0}{R_{He^{2+}}} = 4$		- Know the components of the acceleration vector in	
		He ²⁺		Cartesian coordinate system and in Frenet frame.	
		Method	1		
	4.	Tribunou.	1		
	1.			- Use of the dimensional analysis (dimensional	
		Method	0,5	equations).	
			0.05	- Know the meaning of the physical quantities	
	2.	$T_0 \approx 2.8 \text{ s}$	0,25	involved in the expression of the time-equation	
		$\varphi = -\frac{\pi}{2}$ rad	0,5	$\theta(t)$ for the physical pendulum and determine	
		ψ^{-} 2 rad	-)-	them using the initial conditions.	
P	3.		ethod 0,5	- Know the expression of the natural period for the	
Part II		Method		simple pendulum.	
П				- Exploit the expression of the gravitational	
	4.	Method	0,75	potential energy and the expression of the kinetic	
		IVICTION	1victilod 0,73	energy to determine the mechanical energy of the	
	5.			physical pendulum in the small oscillations case.	
		- Method	0,25	- Exploit the conservation of the mechanical energy	
		$- m \approx 34 \mathrm{kg}$	0,25	of a physical pendulum in the small oscillations	
				case.	
				4454.	