الامتحان الوطني الموحد للبكالوريا المسالك الدولية الدورة الاستدراكية 2020 - عناصر الإجابة – المملكة المغربية وزارة التربية الوضية وزارة التربية الوضية وزارة التربية الوضية والتكوين الممنس المسلم XH8308 م مسلم XH8308 م والتحليم المسلم XH8308 م والامتحانات | Exercice1 | Exercice1 : Chimie(6,5 points) | | | | |-----------|---|--------|--|--| | Question | Eléments de réponse | Barème | Référence de la question dans le cadre de référence | | | Part I- 1 | Direction (1) | 0,5 | -Calculate the value of the quotient of reaction Q _r of a | | | 2 | $I_{2(aq)} + 2e^- \longleftrightarrow 2I_{(aq)}^-$ | 0,25 | chemical system in given stateDetermine the direction of spontaneous evolution of a | | | 3 | $n_{c}(I_{2}) = C_{1}V - \frac{C_{r}V_{E}}{2};$ | 0,5 | chemical systemWrite the half-equation that occurredin each electrode | | | | $n_c(I_2)=7,0 \text{ mmol}$. | 0,25 | (use double arrows) and write the overall equation of the reaction during the battery functioning (use one | | | 4 | $_{\Lambda_{+}}$ 2F.n _c (I ₂) | 0,5 | arrow). | | | | $\Delta t = \frac{2F.n_{c}(I_{2})}{I_{0}} $ $\Delta t = 1,93.10^{4} \text{ s}$ | 0,25 | -Establish the relationship between the amount of substance of chemical specieproduced or consumed, the current intensity andthe operating duration of a | | | 5 | $ \begin{bmatrix} Zn_{(aq)}^{2+} \end{bmatrix} = C_0 + \frac{n_c(I_2)}{V}; $ $ \begin{bmatrix} Zn_{(aq)}^{2+} \end{bmatrix} = 0.17 \text{ mol.L}^{-1} $ | 2x0,25 | battery. Use this relationship to determine other quantities (quantity of charge, progressof the reaction, changeof the mass). | | | | $\left[\left\lfloor Z n_{(aq)}^{2+} \right\rfloor = 0,17 \text{mol.L}^{-1} \right]$ | | -Determine and exploit the point of equivalenceDraw the progress table of a reaction and exploit it. | | | II-1 | Equation of the reaction, | 0,5 | -Know that the ionic product of water K_W , is the | |------|--|------|---| | 3-1 | $C_A = 0.10 \text{mol.L}^{-1}$;
Deduction. | 0,25 | equilibrium constant associated with the equation of the reaction of water autoprotolysis (self-ionization of water).
-Know the relationship $pK_W = -\log K_W$ -Write the equation of titration reaction (useonly one | | | $\tau = \frac{10^{-pH}}{C_A} \; ; \; \tau \simeq 4,2\% \; ;$ Reaction is non complete. | 0,25 | arrow) -Determine the equilibrium constant associated to the equation of acid-base reaction using the acid dissociation constants of existing pairs | | 3-2 | $ \frac{\left[\text{HCOO}^{-}\right]_{\text{\'eq}}}{\left[\text{HCOOH}\right]_{\text{\'eq}}} = \frac{1}{C_{\text{A}} \cdot 10^{\text{pH}} - 1} $ $ \frac{\left[\text{HCOO}^{-}\right]_{\text{\'eq}}}{\left[\text{HCOOH}\right]_{\text{\'eq}}} \approx 4,35.10^{-2} $ | 0,5 | constants of existing pairs. | | 3-3 | Verification. | 0,5 | | | 4 | $pH = \frac{1}{2}(pK_{A1} + pK_{A2});$
$pK_{A2} = 4,76$ | 0,5 | | | | $pK_{A2} = 4,76$ | 0,25 | | | صفحة | 11 | | |------|----|--------| | | 2 | RR 30E | ## الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 - عناصر الإجابة - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية) | Exerci | Exercice 2 : Ondes (2.5 points) – Transformations nucléaires(2,25 points) | | | | |--------|--|--------|--|--| | Quest. | Eléments de réponse | Barème | Référence de la question dans le cadre de référence | | | I-1 | 1 | 0,5 | -Define a mechanical wave and its wave speed. | | | 2/2-1 | During the diffraction of | 0,25 | -Define a transverse wave and a longitudinal wave. | | | | periodic progressive mechanical, | | - Know (Recall) and use the relationship $\lambda = v.T$ | | | | its frequency does not vary. | | -Know(Recall) the characteristics of the diffracted | | | | its frequency does not vary. | | wave. | | | 2-2 | Mechanical, longitudinal wave. | 0,25 | -Define a dispersive medium. | | | | Wicemanical, longitudinal wave. | 0,20 | $V_{\text{max}}(\mathbf{P}_{\text{max}}(\mathbf{P}_{\text{max}}))$ and applicately a solution $\lambda = \mathbf{c}$ | | | 3-1 | The schematic mounting and the | 2x0,25 | - Know(Recall) and exploit the relationship: $\lambda = \frac{c}{v}$. | | | | figure | , | - Know the boundaries of wavelengths and their | | | | 8 | | colours for the visible spectrum in the vacuum. | | | 3-2 | 2.c.D | 2x0,25 | - Know the frequency of a monochromatic radiation | | | | $a = \frac{2.c.D}{f. l.}$; $a \approx 25 \mu m$. | | does not change as it passes from one transparent | | | | 11.01 | | medium to another. | | | 3-3 | The width of the central spot | 2x0,25 | - Suggest the scheme of an experimental set-up | | | | decreases + justification. | 240,20 | allowing us to highlight the diffraction phenomenon in | | | | george of the second se | | the case of light waves. | | | | | | -Know (Recall) and exploit the relationship $\theta = \lambda / a$; | | | | | | and know the units and the meaning of θ and λ . | | | II-1 | $^{210}_{84}P_0 \rightarrow ^{206}_{82}Pb + ^{4}_{2}He$ | 0,25 | - Write the equation of a nuclear reaction by | | | | 04 0 02 2 | | applying the two conservation laws. | | | 2-1 | $ E_1 = 5,4865 \text{MeV}$ | 0,5 | - Establish the energy balance ΔE of a nuclear | | | | | | reaction using: mass energies and/or binding | | | 2-2 | m | 0,25 | | | | | $ E_2 = \frac{m}{m(^{210}_{ot}P_2)} \cdot E_1 \approx 2,518.10^{10} \text{ J}$ | 0,20 | energies and/or the energy diagram. | | | | $m(^{21}_{84}P_0)$ | | - Calculate the energy released (produced) by a | | | | | | nuclear reaction: $E_{pro} = \Delta E $. | | | 3 | t ~128 jours | 0,5 | - Know and exploit the law of the radioactive | | | | $t_{\frac{1}{2}} \simeq 138$ jours | 0,5 | decay, and exploit its curve. | | | | | | - Know that 1Bq is equal to one decay per second. | | | 4 | Steps of the solution | 0,5 | 1 1 | | | | $m_{\text{max}} \simeq 4,4.10^{-12} \text{g}$ | 0.25 | - Define the time constant $ au$ and the half-life $t_{1/2}$. | | | | | 0,25 | - Exploit the relationships between $ au$, $t_{1/2}$ and λ | | | | | | (decay constant). | | | صفحة | | | |------|---|--------| | | 3 | RR 30E | ## الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 - عناصر الإجابة - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية) | Exercice 3 : Electricité (5,5 points) | | | | |---------------------------------------|--|----------|---| | Question | Eléments de réponse | Barème | Référence de la question dans le cadre de référence | | I/1-1-1 | Differential equation | 0,25 | - Know and exploit the relationship $i = \frac{dq}{dt}$ for a | | 1-1-2 | $i(t) = \frac{E}{R} e^{-\frac{t}{RC}} .$ | 0,5 | capacitor in receiver convention. - Know and exploit the relationship q = C.u. | | 1-2-1 | Curve (b). | 0,25 | - Find out the differential equation and verify its solution when the RC dipole is submitted to a step voltage. | | 1-2-2 | Demonstration. | 0,25 | - Recognise and represent the variation curves of $u_C(t)$ between the capacitorterminals and different physical | | 1-2-3 | Demonstration. | 0,75 | quantities associated to it, and exploit them. - Know and exploit the time-constant expression. | | 1-2-4 | $R=1k\Omega$, $E=6V$. | 2x0,25 | - Know the capacitance of the equivalent capacitor in series orin parallelassemblies; and recall the interest of | | 2-1 | Differential equation | 0,5 | each one Represent the voltages (Electric Potential Difference) | | 2-2 | Method; | 0,5+0,25 | u_R and u_L using the receiver convention. | | | $R_1 = -\frac{L}{E} \cdot \left(\frac{du_{R_1}}{dt}\right)_{t=0} \approx 6.7 \Omega$ | | Know and exploit the voltage expression u = r.i + L. di/dt between the inductor(coil) terminal using the receiver convention. Recognise and represent the variation curves of the voltage between capacitor terminals in terms of time for the three states mentioned above; and exploit them. Know and exploit the expression of the charge q(t) and deduce the current intensity expression i(t) flowing it the circuit and exploit it. Find out the differential equation for the voltage between the capacitor terminals or for its charge q(t) in the damping case. Exploit experimental documents in order to | | II-1 | $N_1 = 99 \text{ kHz}$; | 0,25 | - Know the mathematical expression of the sinusoidal voltage. | | | $N_2 = 101 \text{kHz}$. | 0,25 | - Know that the amplitude modulation process is to transform the modulated amplitude voltage to affine | | 2 | $m = \frac{S_m}{U_0}$. | 0,25 | function of the modulating voltage. Recognise the stages of the amplitude modulation Exploit the different experimental obtained curves. | | 3-1 | $m = \frac{2}{3} \approx 0,67$. | 0,5 | -Recognise the different stages of amplitude modulation and amplitude demodulation through their corresponding assembly schemes - Know and exploit the frequency spectrum. | | 3-2 | $U_0 = 3V ; U_m = 4V .$ | 2x0,25 | - Ishow and exploit the frequency spectrum. | الصفحة 4 RR 30E ## الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2020 - عناصر الإجابة - مادة: الفيزياء والكيمياء - شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية) | Exercice | Exercice 4 : Mécanique(3,25 points) | | | | | |----------|---|--------------|--|--|--| | Question | Eléments de réponse | Barème | Référence de la question dans le cadre de référence | | | | I-1 | Demonstration. | 0,5 | - Know and exploit the two models of frictional | | | | 2 | $\eta = \frac{2r^2g}{9v_{lim}}(\rho_S - \rho_\ell) ; \eta \approx 0.314 \text{S.I.}$ | 0,25+0,25 | fluids(viscous forces): $\vec{F} = -k.v.\vec{i}$ and $\vec{F} = -k.v^2.\vec{i}$ - Exploit the curve $v_G = f(t)$ to determine: - Apply Newton's second law to find outthe | | | | 3 | $z(7\tau) \approx 75,6cm$. It's suitable: the permanent state is registered before that the ball reachs the end of the tube. | 0,5 | differential equation of a solid's centre of inertia motion in frictional vertical fall. * the terminal speed; * the characteristic time τ ; * the initial state and the steady state. | | | | II-1 | $x(t)=100.\cos(\alpha).t$;
$y(t)=-5t^2+100\sin(\alpha).t$. | 0,25
0,25 | Apply Newton's second law in the case of a projectile to: * find out differential equation of motion; * deduce the parametric equations of motion and | | | | 2 | $y(x) = \frac{-5.10^{-4}}{\cos^2 \alpha} x^2 + x \tan \alpha$. | 0,5 | exploit them; * establish the equation of the path (trajectory), find out the expressions of the range and the | | | | 3-1 | $\alpha_1 \simeq 77.5^{\circ} \; ; \; \alpha_2 \simeq 26.6^{\circ} \; .$ | 0,25+0,25 | maximum height of the path and exploit them; | | | | 3-2 | Demonstration. | 0,25 | | | |