الصفحة 1 4 *

الامتمان الوطني المومد للبكالوريا

المسالك الدولية

الدورة الاستدراكية 2021 - عناصر الإجابة –

SSSSSSSSSSSSSSSSS

RR 30E

V 196EY TOWN V 1000 TOON V 196IHY TOXAN +ETHOH I 19XEK TETO +TARVEL I NEADED

المركز الوطني للتقويم والامتحانات

مدة الإنجاز 4h

الفيزياء والكيمياء

المادة

المعامل 7

شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)

الشعبة أو المسلك

Exercise	e1: Chimistry(7 points)		
Question	Element of answers	Scale	Reference of the question in the Reference Framework
Part 1 1-1	Equation of the reaction.	0,5	-Determine the pH for an aqueous solutionKnow that the ionic product of water Kw, is the equilibrium constant associated with the equation of the reaction of water
1-2	$\tau = \frac{\sigma - C(\lambda_2 + \lambda_3)}{C(\lambda_1 - \lambda_2)} ; \tau = 0,035\%$	0,5+0,25	autoprotolysis (self-ionization of water). -Determine the pH value of aqueous solution based on the molar concentration of ions H₃O⁺ or HO⁻. -Use the relationship linking the conductance G of a solution part
1-3	$K_A = \frac{C.\tau^2}{1-\tau}$; verification.	0,5+0,25	to the effective molar concentrations [Xi] of Xi ions in the solution. -Know that when the state of equilibrium of the system is
1-4	-Predominance diagram. - The predominant species is the acid.	0,5 0,25	reached, the amount of substances will remain steady, and that this equilibrium state is dynamic. -Give and use the expression of the reaction quotient Qr through the reaction equation.
1-5	2	0,75	-Know that, the reaction quotient in equilibrium Q _{r.eq} , associated to the reaction equation of a chemical system, takes a value
2-1	Equation of the reaction.	0,5	independent of concentrations, called equilibrium constant KKnow that, for a given transformation, the final progress rate depends on the equilibrium constant and the initial state of the
2-2	$K = \frac{K_A}{K_e}$; $K \simeq 6.3.10^4$.	0,25+0,25	chemical system. -Define the final progress rate of a reaction, and determine it using experimental data. -Determine the equilibrium constant associated to the equation of
2-3	Yes; Justification.	0,25+0,5	acid-base reaction using the acid dissociation constants of existing pairs. -Write the equation of titration reaction (use only one arrow). -Exploit the curve or the results of the titration. -Write and use the expression of the acid dissociation constant KA associated with the reaction of an acid with water. -Know the relationship pKA=-logKA -Indicate the predominant chemical specie taking into consideration pH of aqueous solution and pKA of pair acid/base

صفحة	41	
	2	RR 30E
4	2	

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2021 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)

Question	Element of answers	Scale	Reference of the question in the Reference Framework
Part II :1	Overall equation.	0,5	-Draw the progress table of a reaction and exploit itDetermine the direction flow of the charge carriers in a cell using the criterion of spontaneous evolution.
2	Method; $Q_{max} = 9,65.10^2 C$	2x0,25	-Interpret the functioning of a battery based on: the direction of electric current flow, the electromotive force (emf), the electrode
3	Method; $\left[Ni_{(aq)}^{2+}\right] \approx 0,12 \text{ mol.L}^{-1}$.	0,5+0,25	reactions, the polarity of electrodes or the movement of charg carriers. -Write the half-equation that occurred in each electrode (use double arrows) and write the overall equation of the reaction during the battery functioning (use one arrow). -Establish the relationship between the amount of substance of chemical specie produced or consumed, the current intensity the operating duration of a battery. Use this relationship to determine other quantities (quantity of charge, progress of the reaction, change of the mass).

Questi	Element of answers	Scale	Reference of the question in the Reference Framework
1	No.	0,25	 -Define a mechanical wave and its wave speed. -Know that light has a wave aspect, based on the diffraction phenomenon. -Know the influence of the size of the slit (opening) or of the obstron the diffraction phenomenon. -Exploit a document or a diffraction pattern in the case of light ward-pefine a monochromatic and a polychromatic light. -Know that the transparent media are more or less dispersive. -Know (Recall) and exploit the relationship θ = λ/a; and know
2	\mathbf{a} is of the order of λ .	0,25	
3	2.	0,5	units and the meaning of $ heta$ and λ .
4-1	Method; $\lambda = 0,6 \mu\text{m}$.	2x0,25	-Exploit experimental measurements to verify the relationship
4-2	Method; $a_1 = 60 \mu\text{m}$	2x0,25	$\theta = \lambda a$.

Questi on	Element of answers	Scale	Reference of the question in the Reference Framework
1	Equation of the reaction.	0,25	-Know and exploit the two laws of conservation.
2	$ \Delta E \simeq 2,645.10^{-11} \mathrm{J}$.	0,25	-Write the equation of a nuclear reaction by applying the two conservation laws.
3	Method; $ \Delta E' \approx 3,389.10^{12} \text{ J}$.	2x0,25	-Use different units of mass, energy and the relationships between their unitsCalculate the energy released (produced) by a
4	Method; $m \approx 3,97.10^4 \text{ kg}$.	2x0,25	nuclear reaction: $E_{pro} = \Delta E $

الصقحة	
3	RR 30E
4	1

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2021 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)

Exercise 4	: Electricity (5 points)		
Question	Element of answers	Scale	Reference of the question in the Reference Framework
1-1	Différential equation .	0,5	-Know and exploit the relationship $i = \frac{dq}{dt}$ for a
1-2	Verification.	0,5	capacitor in receiver convention. -Know and exploit the relationship q = C.u.
1-3-1	Demonstration.	0,5	-Represent the voltages (Electric Potential Difference)
1-3-2	Method; $t_R \approx 0,46 \text{ s}$.	2x0,25	u_R and u_C using the receiver convention; -Know and exploit the voltage expression
1-3-3	Proposition.	0,25	$u = r.i + L.\frac{di}{dt}$ between the inductor (coil) terminals
2-1	k=6Ω	0.5	using the receiver convention.
2-1	K=022	0,5	Find out the differential equation for the voltage
2-2	$I_m = 2 \text{ mA}$; C=40 nF;	3x0,25	between the capacitor terminals or for its charge $q(t)$ in
		DAOSED	the damping caseKnow and exploit the expression of the total energy in
	$Q_0 = 0.4 \mu\text{C}$		the circuit.
			-Know and exploit the natural period expression.
			-Exploit experimental documents
			-Know and exploit the expression of the electric energy
			stored in a capacitor.
			-Know and exploit the expression of the magnetic
			energy stored in an inductor.
			-Know and exploit the energetic diagrams.
			-Know the role of the oscillation maintenance device
			which compensates the energy dissipated by Joule effect in the circuit.
			-Find out the differential equation for the voltage
			between the capacitor terminals or for its charge $q(t)$ in
			the RLC circuit that is maintained by using a generator
			delivering a voltage which is proportional to the current
			intensity: $u_G(t) = k.i(t)$.
3-1	D (h) timelities	0,25	- Know the mathematical expression of the sinusoidal
J-1	$R_1 \rightarrow (b)$ +justification.	0,23	voltage.
3-2	$N_0 \approx 800 \mathrm{Hz}$	0,25	
	110 000 112		-Know and exploit the impedance expression $Z = \frac{U}{I}$ of
3-3	$\Delta N = 160 \mathrm{Hz} \; ; Q \simeq 5 \; .$	2x0,25	a circuit.
			-Know the unit of the impedance (Ω) .
3-4	Method; $R_1 \approx 1002 \Omega$.	2x0,25	-Recognise the electric resonance phenomenon and its
			characteristics.
			-Know and exploit the quality factor expression
			$Q = \frac{N_{\circ}}{\Delta N}$.
			-Exploit experimental documents in order

الصفحة 4

4 RR 30E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2021 - عناصر الإجابة - مادة: الفيزياء والكيمياء- شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)

Exercise 5: Mechanics (4,5 points)

Question	Element of answers	Scale	Reference of the question in the Reference Framework
I- 1-1	Demonstration	0,5	-Apply Newton's second law to determine the kinetic quantities $\overrightarrow{\mathbf{v}_G}$ and $\overrightarrow{a_G}$ and dynamic quantities and
1-2	$v_{\ell} = \frac{2r^2g}{9\eta}(\rho_H - \rho_A)$	0,25	exploit them. -Know and exploit the two models of frictional fluids (viscous forces): $\vec{F} = -k.v\vec{i}$ and $\vec{F} = -k.v^2\vec{i}$
1-3	Verification.	0,5	-Apply Newton's second law to find out the differential equation of a solid's centre of inertia
2-1	Method	0,5	motion in frictional vertical fall.
	$q = \frac{4\pi r^3 \cdot d \cdot g}{3U_0} \left(\rho_H - \rho_A \right) .$	0,25	
2-2	Method; N=10.	2x0,25	
II- 1-1	Uniformly varied straight line motion.	0,5	-Know and exploit the characteristics of the uniformly accelerated straight line motion and its parametric equations.
1-2	$x(t) = \frac{1}{2} \frac{eU_0}{m_1 d} t^2 ; v(t) = \frac{eU_0}{m_1 d} t$	2x0,25	-Know and exploit the relationships $\vec{F}=q\vec{E}$ and $E=\frac{U}{d} \ .$
1-3	Deduce the expression.	0,5	-Know the characteristics of Lorentz force and the rule to determine its direction.
2	$MN = \frac{2}{B} \sqrt{\frac{2U_0}{e}} (\sqrt{m_2} - \sqrt{m_1})$	0,5	-Apply Newton's second law in the charged particle case inside a uniform magnetic field, with \overrightarrow{B} perpendicular to $\overrightarrow{\mathbf{v}_0}$ in order to:
	MN ≈ 2,54 cm .		* determine the type of motion; * calculate the magnetic deflection.