1 4 *

الامتحان الوحني الموحد للبكالوريا المساك الدولية

الدورة الاستدراكية 2021 - عناصر الإجابة –

SSSSSSSSSSSSSSSSS

RR 28E

V 190EN YERY V 2005 TOOM

V 190EN YER V 2005 TOOM

PYRING I I IEAOO

السلطة الدرية وارج الدرية الرئيسة والمسكون الدس م الدائر والمست الدائر الدرية

المركز الوطني للتقويم والامتحاثات

مدة الإنجاز Jh

الفيزياء والكيمياء

المادة

المعامل 7

شعبة العلوم التجريبية مسلك العلوم الفيزيانية (خيار إنجليزية)

الشعبةأو المسلك

			EXERCI	SE1 (7 poin	its)
Question		on	Answers	Marking scale	Question reference in the framework
		1)	1 = pH-meter; 2 = burette 3 = methanoic acid solution; 4 = Sodium hydroxide solution	4x0,25	
	I	2)	$AH_{(aq)} + HO_{(aq)} \rightarrow A_{(aq)} + H_2O_{(\ell)}$	0,5	- Write the equation of titration reaction (use only one arrow)
		3)	$V_{bE} = 15 \text{mL}$	0,25	- Know the experimental set-up of an acid-base titration.
		4)	$C_{a} = \frac{C_{b}.V_{bE}}{V_{a}}$	0,25	- Exploit the curve or the results of the titration Determine and exploit the point of equivalence Write the equation of the acid-base reaction and identify the type involved.
		-,	$C_a = 10^{-1} \text{ mol.L}^{-1}$	0,25	 pairs involved. Calculate the final progress of the reaction that occurs between an acid and water taking into consideration the value of both the concentration and this acid's pH aqueous solution; the compare it with the maximum progress. Give and use the expression of the reaction quotient Q_t through
Part 1	п	1)	$AH_{(aq)} + H_2O_{(\ell)} \rightleftharpoons A_{(aq)}^- + H_3O_{(aq)}^+$	0,5	
_		2.1)	Method $ \frac{A^{-}}{A^{-}} = 4,35.10^{-2} $	0,5	the reaction equation. - Know that, for a given transformation, the final progress ra depends on the equilibrium constant and the initial state of the chemical system. - Write and use the expression of the acid dissociation constant.
		2.2)	AH is predominant	0,25	K _A associated with the reaction of an acid with water.
		3)	Method $pK_A \approx 3,74$	0,25 0,25	Know the relationship pK _A = -logK _A . Indicate the predominant chemical specie taking consideration pH of aqueous solution and pK _A of pair acid/l
		1)	Method	0,25	
	ш	2)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0,25 0,25	
		3)	au increases with dilution	0,25	
		1)	The oxidation occurs at the electrode of nickel+ justification	0,25 0,25	Draw a cell diagram / diagram of an electrochemical cell (battery) Interpret the functioning of a battery based on: the direction of clostric current flow the electrocation for a contract flow the electrocation flow.
		2)	$Ni_{(s)} + 2Ag^{+}_{(aq)} \rightarrow Ni^{2+}_{(aq)} + 2Ag_{(s)}$	0,5	electric current flow, the electromotive force (emf), the electrode reactions, the polarity of electrodes or the movem of charge carriers.
	Part 2	3)	$\Delta t = \frac{2 F m}{I M(Ni)}$	0,25	Write the half-equation that occurred in each electrode (use double arrows) and write the overall equation of the reaction during the battery functioning (use one arrow).
			$\Delta t = 8,94 h$	0,25	- Establish the relationship between the amount of substance of chemical specie produced or consumed, the current intensity
		4)	$[Ni^{2+}] = C_1 + \frac{n(Ni)}{V}$ $[Ni^{2+}] = 2,17.10^{-1} \text{ mol. L}^{-1}$	0,25	and the operating duration of a battery. Use this relationship to determine other quantities (quantity of charge, progress of the reaction, change of the mass).
			$ [Ni^{2+}] = 2.17.10^{-1} \text{ mol. L}^{-1}$	0,25	·

لصقحة	١

2 RR 28E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2021-عناصر الإجابة - مادة: الفيزياء والكيمياء-شعبة العلوم التجريبية مسلك العلوم الفيزيانية (خيار إنجليزية)

EXERCISE II (2 points)				
Question	Answers	Marking scale	Question reference in the framework	
1.1)	False	0,25		
1.2)	True	0,25	- Define a mechanical wave and its wave speed Define a transverse wave and a longitudinal wave.	
1.3)	False	0,25	Define a progressive wave. Exploit experimental documents and data in order to determine:	
1.4)	True	0,25	* distance; * time delay; * wave speed. - Suggest a scheme of experimental set-up (mounting) to	
2.1)	$Method v = 5000 m.s^{-1}$	0,5 0,25	measure time delay or to determine the wave speed durin the wave propagation. - Recognize a periodic progressive wave and its period.	
2.2)	Aluminium	0,25	- Recognize a periodic progressive wave and its period	

EXERCISE III (2,5points)				
Question	Answers	Marking scale	Question reference in the framework	
1)	$^{32}_{15}P \rightarrow ^{0}_{-1}e + ^{32}_{16}S$ Daughter nucleus : $^{32}_{16}S$	0,25 0,25	-Know the meaning (significance) of the symbol A_ZX and give the corresponding composition of the nucleus Know and exploit the two laws of conservation.	
2.1)	Method	0,5	- Define the radioactivity: α , β^+ & β^- and the γ radiation. - Write the equation of a nuclear reaction by applying the	
2.2)	Method $\lambda = 4,85.10^{-2} \text{ days}^{-1}$	0,25 0,25	two conservation laws. - Recognize the type of radioactivity using the equation of a nuclear reaction.	
2.3)	Method	0,25	- Know and exploit the law of the radioactive decay, and exploit its curve.	
3)	Method $a_1 \approx 2,6.10^7 \mathrm{Bq}$	0,5 0,25	- Exploit the relationships between $ au$, $t_{1/2}$ and λ (deconstant).	

عة	بيف	1
	\	3

3 RR 28E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2021 - عناصر الإجابة - مادة: الفيزياء والكيمياء - شعبة العلوم التجريبية مسلك العلوم الفيزيائية (خيار إنجليزية)

		EXE	RCISE IV (5,5	points)	
Question		Answers	Marking scale	Question reference in the framework	
	1)	Method	0,25 0,25	- Know and exploit the relationship $i = \frac{dq}{dt}$ for a capacitor receiver convention.	
I-	2)	Method	0,25	 Know and exploit the relationship q = C.u. Know the capacitance of a capacitor, its unit F and the submultiples μF, nF and pF. Determine the capacitance of a capacitor graphically or b calculation. Find out the differential equation and verify its solution whe the RC dipole is submitted to a step voltage. Recognize that the voltage between capacitor terminals is continuous function of time at t=0, and the current intensity is discontinuous function at t=0. Know and exploit the time-constant expression. Exploit experimental documents in order to: *determine the time-constant and charge duration. Know how to connect an oscilloscope and a datalogger to monitor different voltages. 	
	3)	$Method \\ \tau = R_1.C$	0,25 0,25		
	4)	$\tau = 12 \text{ms}$ Checking the value of C	0,25 0,25		
	1)	Experimental set-up	0,25	 Suggest the scheme of the experimental assembly that allow studying the response of the RL dipole which is submitted to a step voltage. 	
	2)	$ \frac{L}{R_2 + r} $	0,25 0,25	- Know and exploit the voltage expression $u = r.i + L.\frac{di}{dt}$ between the inductor (coil) terminals using the receiver convention.	
	3)	Method $I_{p} = \frac{E}{R_{2} + r}$	0,25 0,25	Determine the two characteristics of the inductor (the inductance L, the resistance r) exploiting experimental results. Find out the differential equation and verify its solution when	
II-	4)	Method $r = 5 \Omega$	0,25 0,25	the RL dipole is submitted to a step voltage. - Determine the current intensity expression <i>i(t)</i> when the RL dipole is submitted to a step voltage, and deduce the voltage	
	5)	Check the value of L	0,25	expressions between the inductor terminals and the resistor terminals. Recognize and represent the variation curves of current intensity <i>i(t)</i> in terms of time across the inductor and different physical quantities associated to it, and exploit them. Know and exploit the time-constant expression. Exploit experimental documents in order to *determine the time-constant.	
	1)	Curve (a) : R ₃ Curve (b) : R ₄	0,25 0,25	- Define and recognize the undamped (periodic), underdamped (pseudo-periodic) and the overdamped (no periodic) states.	
	2)	$T = 45 \text{ ms}$; $T \approx T_0$ $T_0 = 44,87 \text{ ms}$	0,25 0,25	Know and exploit the natural period expression. Know and exploit the energetic diagrams. Know and exploit the expression of the total energy in	
ш-	3)	Method $\Delta E_t = -0,54 \mathrm{mJ}$	0,25 0,25	circuit. - Find out the differential equation for the voltage between capacitor terminals or for its charge $q(t)$ in the damping ca - Exploit experimental documents in order to: * recognize the observed voltages; * recognize the damping states; * determine the values of the period and the natural period.	

الصفحة			
$\overline{}$	4		

RR 28E

الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2021-عناصر الإجابة - مادة: الفيزياء والكيمياء-شعبة العلوم التجريبية مسلك العلوم الفيزيائية (خيار إنجليزية)

	EXERCISE V (3points)					
Question	Answers	Markings cale	Question reference in the framework			
4)	$\frac{dv_x}{dt} = 0$	0,25	Know Newton's second law $\sum \vec{F_{ex}} = m.\frac{\Delta \vec{V_{e}}}{\Delta t}$ and			
1)	$\frac{dv_{y}}{dt} = -g$	0,25	$\sum \vec{F_{ex}} = m. \vec{a_G} \text{ and its range of validity.}$ Apply Newton's second law to find out the differential content of a content o			
2)	$V_{x}(t) = V_{0} .\cos \alpha$	0,25	equation of a system's centre of inertia motion in horizont or inclined plane and determine the characteristics of kinet			
<i>2)</i>	$v_y(t) = -g.t + V_0.\sin\alpha$	0,25	and dynamic quantities of motion. - Exploit a document representing the path (trajectory) of a			
3.1)	Method $g = 10 \text{ m.s}^{-2}$	0,25 0,25	projectile in a uniform gravitational field to: * determine the type of the motion (plane);			
3.2)	Method $\alpha \approx 4.9^{\circ}$	0,25 0,25	* represent the velocity and the acceleration vectors; * determine the initial conditions and some parameters characterizing motion.			
3.3)	Method $V_0 \approx 69,96 \mathrm{m.s^{-1}}$	0,25 0,25	Apply Newton's second law in the case of a projectile to: * find out differential equation of motion; * deduce the parametric equations of motion and exploit			
4)	Method $V_E \approx 69,91 m.s^{-1}$	0,25 0,25	them; * establish the equation of the path (trajectory), find o expressions of the range and the maximum height of th pathand exploit them; - Exploit the velocity-time graph: $v_G = f(t)$ - Select the appropriate frame of reference to study mot			