

الامتحان الوطني الموحد للبكالوريا الدورة الاستدراكية 2012 الموضوع

7	المعامل	الفيزياء والكيمياء الفيزياء والكيمياء	المادة
3	مدة الإنجاز	شعبة العلوم التجريبية مسلك العلوم الفيزيائية	الشعب(ة) أو المسلك

يسمح باستعمال الآلة الحاسبة العلمية غير القابلة للبرمجة تعطى التعابير الحرفية قبل التطبيقات العددية

يتضمن الموضوع أربعة تمارين: تمرين في الكيمياء وثلاثة تمارين في الفيزياء

الكيمياء: (7 نقط)

- ♦ التحليل الكهربائي لمحلول برومور النحاس II.
 - ♦ الدراسة الحركية لحلمأة إستر.

الفيزياء: (13 نقطة)

- ♦ الموجات (2,5 نقط): دراسة ظاهرة حيود الضوء.
- ♦ الكهرباء (5 نقط): دراسة الدارة المثالية LC.
 استقبال موجة مضمنة الوسع وإزالة التضمين.
- ♦ الميكانيك (5,5 نقط): تطبيق قوانين كيبلر في حالة مسار دائري.

الكيمياء: (7 نقط)

سلم التنقيط

1

1

0.25

0.75

الجزءان مستقلان

الجزء الأول (3 نقط): التحليل الكهربائي لمحلول برومور النحاس II يعتبر التحليل الكهربائي من التقنيات الأساسية المعتمدة في العمل المخبري والصناعي ، حيث يمكن من تحضير بعض الفلزات ومركبات كيميائية أخرى تستعمل في الحياة اليومية. يهدف هذا الجزء من التمرين إلى تحضير ثنائي البروم Br_2 و فلز النحاس بواسطة التحليل الكهربائي.

المعطيات:

- - $F = 9,65.10^4 \ C.mol^{-1}$: ثابتة فرادي ثابتة

 E_2 و E_1 باستعمال إلكترودين E_1 و E_1 و ينجز التحليل الكهربائي لمحلول برومور النحاس E_1 ذي الصيغة E_1 ويتوضع فلز النحاس على مستوى E_1 على مستوى على مستوى E_1 ويتوضع فلز النحاس على مستوى E_1 على مستوى E_1 على مستوى الغرافيت ، فيتكون ثنائي البروم E_1 على مستوى E_1 على مستوى E_1 ويتوضع فلز النحاس على مستوى E_1 على مستوى

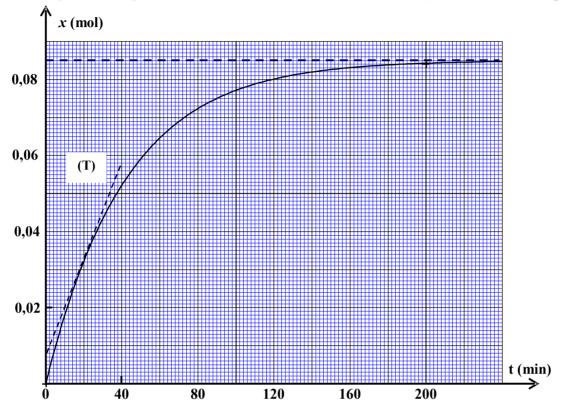
- 1- مثل تبيانة التركيب التجريبي لهذا التحليل الكهربائي محددا الكاثود والأنود.
 - 2- اكتب نصف معادلة التفاعل الحاصل عند كل إلكترود.
- 3- استنتج المعادلة الكيميائية الحصيلة المنمذجة للتحول الذي يحدث أثناء التحليل الكهربائي.
 - . $\Delta t = 2h$ خلال المدة I = 0.5A خبرود مولد كهربائي الدارة بتيار كهربائي شدته ثابتة
 - حدد الكتلة m للنحاس الناتج خلال مدة اشتغال المحلل الكهربائي.

الجزء الثاني (4 نقط): الدراسة الحركية لحلمأة إستر

يتميز المركب العضوي إيثانوات 3 - مثيل بوتيل برائحة زكية تشبه رائحة الموز؛ ويضاف كمادة معطرة في بعض الحلويات و المشروبات و الياغورت .

يهدف هذا الجزء من التمرين إلى الدراسة الحركية لتفاعل حلمأة إيثانوات 3 - مثيل بوتيل وتحديد ثابتة التوازن لهذا التفاعل.

المعطيات:


- الكتلة المولية للمركب $M(E) = 130 g.mol^{-1}$: E الكتلة المولية المركب
- الكتلة الحجمية للمركب $\rho(E) = 0.87 g.mL^{-1}$: E الكتلة
 - $M(H_2O) = 18g.mol^{-1}$: الكتلة المولية للماء
 - . $\rho(H_2O) = 1 g.mL^{-1}$: الكتلة الحجمية للماء

 CH_3

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كائل العلوم الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية

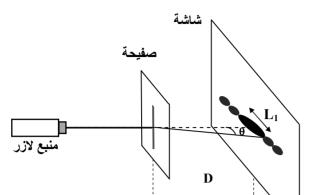
نصب في حوجلة الحجم $V(H_2O)=35\,m$ من الماء المقطر ونضعها في حمام مريم درجة حرارته ثابتة ثم نضيف إليها الحجم $V(E)=15\,m$ من المركب $V(E)=15\,m$ ، فنحصل على خليط حجمه $V(E)=15\,m$

- 0,25 1 حدد المجموعة المميزة للمركب (E).
- 2- اكتب المعادلة الكيميائية المنمذجة لحلمأة المركب (E) باستعمال الصيغ نصف المنشورة .
- x(t) التالي المنحنى الممثل في الشكل التالي . x(t) بدلالة الزمن ، فنحصل على المنحنى الممثل في الشكل التالي .

- ور بيدر عن السرعة الحجمية للتفاعل بالعلاقة $v = \frac{1}{V} \frac{dx(t)}{dt}$ ، حيث V الحجم الكلي للخليط ، $v = \frac{1}{V} \frac{dx(t)}{dt}$ المنحنى للخليط ، $t = 20 \, \mathrm{min}$ قيمة السرعة عند اللحظة $t = 20 \, \mathrm{min}$. (يمثل المستقيم $t = 20 \, \mathrm{min}$) النقطة ذات الأفصول $t = 20 \, \mathrm{min}$)
 - . $t_{1/2}$ التقاعل و زمن نصف التفاعل ، التقدم النهائي x_f التفاعل ، التقاعل 3.2
 - 1,5 أنشئ الجدول الوصفي لتطور المجموعة الكيميائية ثم أوجد تركيب الخليط عند التوازن.
 - (E) الموافقة لحلمأة المركب (E) الموافقة لحلمأة المركب (E)

الفيزياء (13 نقطة)

الموجات (2,5 نقط): دراسة ظاهرة حيود الضوء


تُستعمل أشعة اللازر في مجالات متعددة كالصناعة المعدنية و طب العيون والجراحة... وتوظف كذلك لتحديد الأبعاد الدقيقة لبعض الأجسام .

يهدف التمرين إلى تحديد طول موجة كهرمغنطيسية وتحديد قطر سلك معدني رفيع باعتماد ظاهرة الحيود.

RS28

الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كالحك – الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية

نسلط ، بواسطة منبع لازر ، حزمة ضوئية أحادية اللون طول موجتها λ على صفيحة بها شق رأسي عرضه D=1.5m ، فنشاهد ظاهرة الحيود على شاشة رأسية توجد على المسافة D=1.5m من الصفيحة.

يعطي قياس عرض البقعة الضوئية المركزية القيمة $L_1 = 3.5 \, \text{cm}$

- a انكر الشرط الذي ينبغي أن يحققه عرض الشق b لكي تحدث ظاهرة الحيود.
 - 0,5 أ 2- ما هي طبيعة الضوء التي تبرزها هذه التجربة ؟
- λ او α و α و α او α (نعتبر α α بالنسبة لزاوية α صغيرة (نعتبر α
- 4- نزيل الصفيحة ونضع مكانها بالضبط سلكا معدنيا رفيعا قطره d مثبتا على حامل ، فنعاين على الشاشة

. d محدد القطر $L_2=2.8\,\mathrm{cm}$ هو الحالة هو عرض البقعة المركزية في هذه الحالة هو

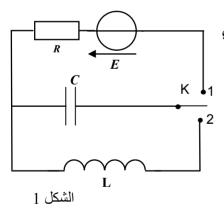
الكهرباء (5 نقط):

0.75

0,5

0.25

0,25


تلعب المكثفات والوشيعات دورا هاما في عملية بث واستقبال الموجات الكهرمغنطيسية . يهدف هذا التمرين إلى دراسة الدارة المثالية LC وإلى دراسة استقبال موجة مضمّنة وإزالة تضمينها.

الجزءان مستقلان

الجزء الأول: دراسة الدارة LC

ننجز التركيب المبين في الشكل 1 المكون من:

- مولد كهربائي قوته الكهرمحركة $E=12\,V$ ومقاومته الداخلية مهملة ؛
 - $C = 4,7.10^{-3} F$ مكثف سعته $C = 4,7.10^{-3} F$
 - موصل أومي مقاومته Ω R=200 ؛
 - وشيعة معامل تحريضها \perp ومقاومتها مهملة ؛
 - قاطع التيار K ذي موضعين .

نضع القاطع K في الموضع 1 إلى أن يُشحن المكثف كليا ثم نؤرجحه إلى الموضع 2 عند لحظة $t_0=0$ نعتبر ها أصلا للتواريخ.

- . المعادلة التفاضلية التي تحققها الشحنة q للمكثف .
- وجد تعبير الدور الخاص T_0 للمتذبذب بدلالة L و C لكى يكون C

التعبير $q(t)=Q_m . \cos(rac{2\pi}{T_0}t)$ حلا لهذه المعادلة التفاضلية.

- T_0 بعد زمني الدور T_0 بعد زمني .
- . احسب القيمة القصوى Q_m الشحنة المكثف Q_m
- 5- يعطي الشكل 2 تغيرات الطاقة الكهربائية E_e المخزونة في المكثف بدلالة الزمن .

E_e

0

0,1

0,2

0,3

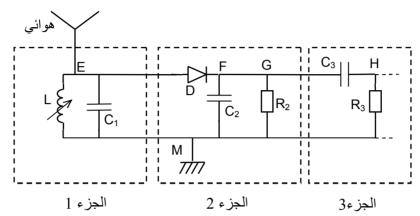
0,4

t (

RS28

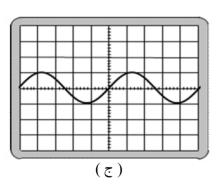
الامتحان الوطني الموحد للبكالوريا -الدورة الاستدراكية كائل العلوم الموضوع - مادة: الفيزياء والكيمياء – شعبة العلوم التجريبية مسلك العلوم الفيزيائية

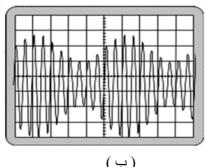
- . T_0 محدد قيمة مو $T=\frac{T_0}{2}$ هو E_e المحافة علما أن الدور T للطاقة والمحدد قيمة المحدد قيمة E_e
 - رمان المستعملة للوشيعة المستعملة $_{\rm L}$ للوشيعة المستعملة $_{\rm L}$
- 6- نذكر بأن الطاقة الكلية E_T للدارة هي ، في كل لحظة ، مجموع الطاقة الكهربائية المخزونة في المكثف والطاقة المخزونة في الوشيعة . بيّن أن الطاقة E_T ثابتة واحسب قيمتها .

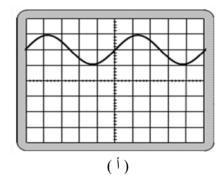

الجزء الثاني: استقبال موجة مضمّنة الوسع وإزالة التضمين

لاستقبال موجة منبعثة من محطة إذاعية ، نستعمل الجهاز المبسط والمكوَّن من 3 أجزاء كما هو ممثل

في الشكل 3.


0,75





1- يتكون الجزء 1 من هوائي و وشيعة معامل تحريضها قابل للضبط مقاومتها مهملة ومكثف سعته $C_1=4,7.10^{-10}\,F$

- 0,25 ما هو الدور الذي يلعبه الجزء 1؟
- . L_1 التحريض للوشيعة على القيمة $f=160\,kHz$ التحريض للوشيعة على القيمة AM التحريض للوشيعة على القيمة L_1 احسب L_1 .
- و $_{0,5}$ 2 من إزالة تضمين الإشارة المستقبَلة . ما دور كل من الجزئين 2 و 3 في عملية إزالة التضمين ؟
 - نحصل على راسم التذبذبات التوترات u_{EM} و u_{GM} ، فنحصل على المنحنيات التالية : u_{HM} .

أقرن كل منحنى من المنحنيات الثلاثة (أ) و (ب) و (ج) بالتوتر الموافق له ؛ علل جوابك .

الميكانيك (5,5 نقط):

يعتبر كوكب المشتري (Jupiter) أكبر كواكب المجموعة الشمسية ، ويمثل لوحده عالما مصغرا داخل هذه المجموعة، حيث يدور في فلكه حوالي ستة و ستون قمرا طبيعيا.

يهدف هذا التمرين إلى دراسة حركة المشتري حول الشمس وتحديد بعض المقادير الفيزيائية المميزة له.

المعطيات:

- $M_{\rm S} = 2.10^{30}\,{\rm kg}$: کتلة الشمس
- $G = 6.67.10^{-11} (SI)$: differ like in the second of the second of
- . $T_{\rm J} = 3,74.10^8~{\rm s}$: دور حركة المشتري حول الشمس

 $M_{
m I}$ نعتبر أن للشمس وللمشتري تماثلا كرويا لتوزيع الكتلة ونرمز لكتلة المشتري بالرمز

نهمل أبعاد كوكب المشتري أمام المسافة الفاصلة بينه وبين مركز الشمس ، كما نهمل جميع القوى الأخرى المطبقة عليه أمام قوة التجاذب الكوني بينه وبين الشمس .

1- تحديد شعاع مسار حركة المشترى وسرعته

نعتبر أن حركة كوكب المشتري في المرجع المركزي الشمسي دائرية شعاع مسارها $_{\rm r}$

- . r و $M_{\rm s}$ و $M_{\rm s}$
 - 2.1- بتطبيق القانون الثاني لنيوتن:
- 1,25 1.2.1 اكتب إحداثيتي متجهة التسارع في أساس فريني ، واستنتج أن حركة المشتري حركة دائرية منتظمة .
 - $\frac{T_J^2}{r^3} = \frac{4 \, \pi^2}{G.M_S}$ ين أن القانون الثالث لكيبلر يكتب كما يلي 1.2.2 1
 - $r \approx 7.8.10^{11} \,\mathrm{m}$ تحقق أن 0.75
 - 1 الشمس عة V المشتري خلال دورانه حول الشمس .

2- تحديد كتلة المشتري

1

نعتبر أن القمر "إيو" I_0 ، أحد أقمار كوكب المشتري التي اكتشفها العالم غاليلي ، يوجد في حركة دائرية منتظمة حول مركز المشتري شعاعها $r'=4,2.10^8\,\mathrm{m}$.

نهمل أبعاد "إيو" أمام باقي الأبعاد كما نهمل جميع القوى الأخرى المطبقة عليه أمام قوة التجاذب الكوني بينه وبين المشتري .

 $M_{_{\mathrm{J}}}$ بدر اسة حركة القمر "إيو" في مرجع أصله منطبق مع مركز المشتري الذي نعتبره غاليليا ، حدد الكتلة المشتري .

تصحيح الامتحان الوطئى للباكالوريا الدرورة الإستتراكية 2012 مسلك الطهم الميزياتية

ANODE

CATHODE

cations Cu²⁺

الكيمياء

الجزء الاول: التحليل الكهربائي لمحلول برومور النحاس []:

1-تبيانة التركيب التجريبي للتحليل الكهربائي:

 Br^- الأنود تحدث أكسدة الأيونات -2

 $2Br_{(aa)}^- \rightleftarrows Br_{2(aa)} + 2e^-$

-بجوار الكاثود يحدث اختزال الايون +Cu²⁺

 $Cu_{(aa)}^{2+} + 2e^- \rightleftharpoons Cu_{(s)}$

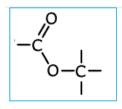
3-المعادلة الحصيلة:

$$Cu_{(aq)}^{2+} + 2Br_{(aq)}^{-} \rightleftarrows Cu_{(s)} + Br_{2(aq)}$$

4-كتلة النحاس الناتجة:

من خلال نصف المعادلة:

$$Cu_{(aq)}^{2+} + 2e^- \rightleftarrows Cu_{(s)}$$


$$n(Cu) = \frac{n(e^{-})}{2}$$
لدينا: نعلم أن:

$$\begin{bmatrix} n(Cu) = \frac{m(Cu)}{M(Cu)} \\ n(e^{-}) = \frac{Q}{F} = \frac{I\Delta t}{F} \end{bmatrix} \Rightarrow \frac{m(Cu)}{M(Cu)} = \frac{I\Delta t}{2F} \Rightarrow$$

anions

$$m(Cu) = \frac{I.\Delta t. M(Cu)}{2F} \xrightarrow{\xi.\Box} m(Cu) = \frac{0.5 \times 3600 \times 63.5}{2 \times 9.65.10^4} = 1.18g$$

الجزء الثاني: الدراسة الحركية لحلمأة الاستر: 1- تحديد المجموعة المميزة للمركب (E):

2-معادلة تفاعل حلمأة الاستلا E:

$$CH_3-C$$
 $O-CH_2-CH_2-CH_3-H_2O$
 CH_3-C
 $O+HO-CH_2-CH_2-CH-CH_3$
 CH_3
 CH_3

 $t = 20 \, min$ عند اللحظة السرعة الحجمية عند اللحظة

$$v = \frac{1}{V} \cdot \frac{dx}{dt}$$

 $t = 20 \, min$ عند اللحظة

$$v(t=20) = \frac{1}{V} \cdot \left(\frac{\Delta x}{\Delta t}\right)_{t=20} = \frac{1}{15.10^{-3}} \cdot \frac{0,057 - 0,008}{40 - 0} = 8,2.10^{-2} \text{ mol. } L^{-1}.\text{min}^{-1}$$

 $x_f = 0.085$ 0,08

0,06

0,04

0,02

t_{1/2} 40

120

: χ_f التحديد المبياني للتقدم النهائي -2.3

$x_f \approx 0.085 \, mol$

$$x_f \approx 0,085\ mol$$
 : رمن نصف التفاعل: $x_{1/2} = \frac{x_f}{2} = 0,0425mol$: لدينا: $t_{1/2} \approx 28\ min$

4-الجدول الوصفى للمجموعة الكيميائية:

-كمية مادة الاستر البدئية : مدة الاستر البدئية
$$n_i(E) = \frac{m(E)}{M(E)} = \frac{\rho(E).V(E)}{M(E)}$$

ت.ع:

ت.ع:

$$n_i(E) = \frac{0.87 \times 15}{130} = 0.1 \ mol$$

t (min)

-كمية مادة الاستر البدئية:

$$n_i(E) = \frac{m(H_2O)}{M(H_2O)} = \frac{\rho(H_2O).V(H_2O)}{M(H_2O)}$$

$$n_i(E) = \frac{1 \times 35}{18} = 1,94 \text{ mol}$$

الجدول الوصفى:

لة الكيميائية	المعاد	CH ₃ -C O CH ₂ -CH ₂ -CH-CH ₃ +H ₂ O = CH ₃ -C O + HO-CH ₂ -CH ₂ -CH-CH ₃ CH ₃ CH ₃ CH ₃				
حالة المجموعة	التقدم	كميات المادة ب (mol)				
الحالة البدئية	0	0,1	1,94	0	0	
حالة التحول	X	0.1 - x	1,94 - x	X	X	
الحالة النهائية	x _{éq}	$0.1 - x_{eq}$	$1,94 - x_{\acute{e}q}$	x _{éq}	x _{éq}	

-تركيب الخليط عند التوازن:

 $x_f = 0.085 \, mol$

عند التوازن يكون تركيب الخليط كما يلى:

$$n_f(E) = 0.1 - 0.085 = 0.015 \, mol$$

 $n_i(H_2O) = 1.94 - 0.085 = 1.855 \, mol$
 $n_f(acide) = n_{f(alcool)} = x_f = 0.085 \, mol$

تحديد ثابتة التوازن K:

$$K = \frac{[acide]_{\acute{e}q}[alcool]_{\acute{e}q}}{[ester]_{\acute{e}q}[H_2O]_{\acute{e}q}}$$

تطبيق عددي:

$$K = \frac{(0,085)^2}{0,015 \times 1,855} \approx 0,26$$

 $\frac{\lambda}{a} > 10^{-3}$

الموجات: دراسة ظاهرة حيود الضوع

1-الشرط اللازم لحدوث ظاهرة حيود الضوء:

2-طبيعة الضوء التي تبرزها هذه التجربة: أن للضوء طبيعة موجية.

: a و D و L_1 بدلالة λ بدلالة 3

$$tan\theta=rac{L_1/2}{D}=rac{L_1}{2D}$$
: بما أن الزاوية $heta$ صغيرة فإن

بما أن الزاوية
$$heta$$
 صغيرة فإن : $tan hetapprox heta \Rightarrow heta = rac{L_1}{2D}$: نعلم أن :

$$\theta = \frac{\lambda}{a}$$

 $\overline{\mathbf{D}}$

$$\frac{L_1}{2D} = \frac{\lambda}{a} \quad (1) \quad \Rightarrow \quad \lambda = \frac{L_1 \cdot a}{2D}$$

وبالتالى:

ت.ع:

$$\lambda = \frac{3.5 \cdot 10^{-2} \times 6.10^{-5}}{2 \times 1.5} = 7.10^{-7} \, m = 700 \, nm$$

4-تحديد القطر d للسلك المعدني : العلاقة (1) تكتب :

$$\frac{L_2}{2D} = \frac{\lambda}{d} \implies d = \frac{2\lambda \cdot D}{L_2} \xrightarrow{\xi \cdot \triangle} d = \frac{2 \times 7.10^{-2} \times 1.5}{2.8.10^{-2}} = 75.10^{-6} m = 75 \,\mu\text{m}$$

الكهرباء

الجزء الاول: دراسة الدارة LC

: q بشات المعادلة التي تحققها الشحنة u_{C} : u_{C} المعادلة التفاضلية التي يحققها قاون إضافية التوترات :

$$u_L + u_C = 0$$
(1)
$$L \frac{di}{dt} + u_C = 0$$

لدينا:

$$\frac{di}{dt} = \frac{d}{dt} \left(\frac{dq}{dt}\right) = \frac{d^2q}{dt^2}$$
$$u_C = \frac{q}{C}$$

$$\frac{d^2q}{dt^2} + \frac{1}{L.C} \cdot q = 0 \quad (2) \Leftarrow \quad L\frac{d^2q}{dt^2} + \frac{q}{C} = 0$$

 T_0 الخاص 1. : T_0

$$\begin{cases} q(t) = Q_m \cos\left(\frac{2\pi}{T_0}.t\right) \\ \frac{dq(t)}{dt} = -\frac{2\pi}{T_0}.Q_m.\sin\left(\frac{2\pi}{T_0}.t\right) \\ \frac{d^2q(t)}{dt^2} = -\left(\frac{2\pi}{T_0}\right)^2 Q_m \cos\left(\frac{2\pi}{T_0}.t\right) = -\left(\frac{2\pi}{T_0}\right)^2 q(t) \end{cases}$$

q(t) نعوض q(t) و $\frac{dq(t)}{dt}$ بتعبير هما في المعادلة التفاضلية q(t) نكتب

$$-\left(\frac{2\pi}{T_0}\right)^2 q(t) + \frac{1}{L.C} \cdot q(t) = 0 \implies \underbrace{q(t)}_{\neq 0} \underbrace{\left(-\left(\frac{2\pi}{T_0}\right)^2 + \frac{1}{L.C}\right)}_{=0} = 0$$

 $T_0 = 2\pi\sqrt{L.C}$

$$rac{2\pi}{T_0}=rac{2\pi}{T_0}=rac{1}{\sqrt{L.C}}$$
 ومنه $\left(rac{2\pi}{T_0}
ight)^2=rac{1}{L.c}$ نستنتج:

التحقق من أن للدور T_0 بعد زمنى:

$$\begin{bmatrix} q = I.\Delta t \\ q = C.u_C \end{bmatrix} \Rightarrow C.u_C = I.\Delta t \Rightarrow C = \frac{I.\Delta t}{u_C} \Rightarrow [C] = \frac{[I].[t]}{[U]}$$

$$T_0 = 2\pi\sqrt{L.C} \quad \Rightarrow \ [T_0] = [L.C]^{\frac{1}{2}} \quad \Rightarrow \ [T_0] = \left(\frac{[U].[t]}{[I]}.\frac{[I].[t]}{[U]}\right)^{\frac{1}{2}} = ([t]^2)^{\frac{1}{2}} = [t]$$

الدور الخاص T_0 له بعد الزمن .

 Q_m الشحنة القصوى Q_m :

عند اللحظة t=0 يكون المكثف مشحونا تحت التوتر E :

$$Q_m = q(0) = C.E$$

 $Q_m = 4.7.10^{-3} \times 12 = 5.64.10^{-2} C$

: T_0 : الدور الخاص : 5.1

T = 0.15s : مبيانيا الدور T للطاقة هو

$$T_0 = 2T = 0.3s$$
 : فإن $T = \frac{T_0}{2}$: بما أن

5.2-استنتاج معامل التحريض]:

$$T_0 = 2\pi\sqrt{L.C}$$
 $\Rightarrow T_0^2 = 4\pi^2 L.C$ $\Rightarrow L = \frac{T_0^2}{4\pi^2.C}$

ت.ع:

$$L = \frac{(0.3)^2}{4\pi^2 \times 4.7 \cdot 10^{-3}} = 0.485 H$$

6-إثبات أن الطاقة الكلية للدارة ثابتة : تعبير ξ_T الطاقة الكلية للدارة :

$$\xi_T = \xi_e + \xi_m$$

: تعبير ξ_e الطاقة الكهربائية المخزونة في المكثف

$$\xi_e = \frac{1}{2} \cdot \frac{q^2}{C}$$

- تعبير ξ_m الطاقة المغنطيسية المخزونة في الوشيعة :

$$\xi_m = \frac{1}{2} \cdot L \cdot i^2$$

$$\frac{dq(t)}{dt} = -\frac{2\pi}{T_0} \cdot Q_m \cdot \sin\left(\frac{2\pi}{T_0} \cdot t\right)$$
 و $q(t) = Q_m \cos\left(\frac{2\pi}{T_0} \cdot t\right)$:

$$\xi_e = \frac{1}{2} \cdot \frac{Q_m^2}{C} \cos^2\left(\frac{2\pi}{T_0} \cdot t\right) + \frac{1}{2} \cdot L \cdot Q_m^2 \cdot \left(\frac{2\pi}{T_0}\right)^2 \sin^2\left(\frac{2\pi}{T_0} \cdot t\right)$$

 $\left(\frac{2\pi}{T}\right)^2 = \frac{1}{L_c}$: لدينا

$$\xi_{e} = \frac{1}{2}.\frac{{Q_{m}}^{2}}{C}cos^{2}\left(\frac{2\pi}{T_{0}}.t\right) + \frac{1}{2}.L.Q_{m}^{2}.\frac{1}{L.C}sin^{2}\left(\frac{2\pi}{T_{0}}.t\right)$$

$$\xi_{e} = \frac{1}{2} \cdot \frac{Q_{m}^{2}}{C} cos^{2} \left(\frac{2\pi}{T_{0}} \cdot t\right) + \frac{1}{2} \cdot \frac{Q_{m}^{2}}{C} sin^{2} \left(\frac{2\pi}{T_{0}} \cdot t\right) \\ \Rightarrow \xi_{e} = \frac{1}{2} \cdot \frac{Q_{m}^{2}}{C} \underbrace{\left[cos^{2} \left(\frac{2\pi}{T_{0}} \cdot t\right) + sin^{2} \left(\frac{2\pi}{T_{0}} \cdot t\right)\right]}_{=1}$$

$$\xi_e = \frac{1}{2} \cdot \frac{{Q_m}^2}{C}$$

بما أن Q_m ثابتة و C ثابتة فإن عدى تطبيق عددي :

$$\xi_e = \frac{1}{2} \cdot \frac{(5,64.10^{-2})^2}{4,7.10^{-3}} = 0,34J$$

منتديات علوم الحياة و الأرض بأصيلة

Moutamadris.ma

الجزء الثاني: استقبال موجة مضمّنة الوسع وإزالة التضمين

1.1-الدور الذي يلعبه الجزء 1:

الجزء 1 يستقبل التوتر المضمّنة الوسع وينتقيها .

عامل تحريض الوشيعة : L_1 معامل عامل عامل الوشيعة :

$$N_0=f$$
 مع $N_0=rac{1}{2\pi\sqrt{L_1.C_1}}$: الدور الخاص للدارة $T_0=2\pi\sqrt{L_1.C_1}$: LC الدور الخاص الدور الدو

هو تردد الموجة التي ينتقيها الجزء 1. f

$$f = \frac{1}{2\pi\sqrt{L_1.C_1}} \implies f^2 = \frac{1}{4\pi^2}.\frac{1}{L_1.C_1} \implies L_1 = \frac{1}{4\pi^2.f^2.C_1}$$

$$L_1 = \frac{1}{4\pi^2 (160.10^3)^2 \cdot 4,7.10^{-10}} = 2,1.10^{-3} H = 2,1 \, mH$$

f الجزء 2: إزالة الموجة الحاملة ذات التردد العالى f. U_0 الجزء 3 إزالة التوتر المستمر

. (ب) التوتر الذي يلتقطه الهوائي وتمثل التوتر المضمَّن الوسع ويوافق المنحنى u_{EM} يمثل u_{GM}^{nn} التوتر الذي نحصل عليه بعد أقصاء الموجة ذات التردد العالي ويوافق المنحنى (أ) . . (τ) التوتر بعد إقصاء التوتر المستمر ويوافق المنحنى (u_{HM}

المبكانبك

1-تحديد شعاع مسار حركة المشترى وسرعته:

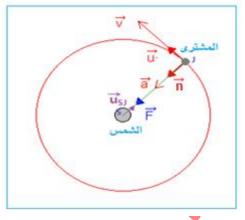
1.1-تعبير شدة قوة التجاذب الكونى بين الشمس والمشتري:

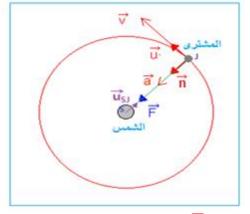
$$F_{S/J} = G. \frac{M_S. M_J}{r^2}$$

1.2.1- إحداثيتي متجهة التسارع في أساس في أساس فريني: المجموعة المدروسة: كوكب المشتري $ec{F}_{S/I}$: المشتري الى قوة التجاذب الكونى المطبقة من طرف الشمس

نعتبر المعلم المركزي الشمسي الذي نعتبره غاليليا . نطبق القانون الثاني لنيوتن :

$$\sum_{i} \vec{F}_{ext} = M_{J} \cdot \vec{a} \quad \Rightarrow \vec{F}_{S/J} = M_{J} \cdot \vec{a} \quad (1)$$


 $ec{F}_{S_{/I}} = -G.rac{M_S.M_J}{r^2}$ نكتب : متجهة قوة التجاذب الكوني التي تطبقها الشمس على كوكب المشتري تكتب $ec{F}_{S_{I_I}} = G.rac{M_S.M_J}{r^2}$ $ec{n}$: متجهة القوة تكتب $ec{n} = -ec{u}_{SJ}$: باعتبار المتجهة الواحدية


$$\vec{a} = G. \frac{M_S}{r^2} \, \vec{n}$$
 (2) أي: $M_J. \, \vec{a} = G. \frac{M_S. M_J}{r^2} \, \vec{n}$: العلاقة (1) تكتب

$$\vec{a}=a_T.\vec{u}+a_N.\vec{n}$$
 (3) : تكتب: ($S,\vec{u}.\vec{n}$) تكتب: : ين العلاقتين (2) و (3) نستنتج إحداثيتي متجهة التساع $a_t=0$ $a_t=0$ $a_N=G.\frac{M_S}{r^2}$

$$\vec{a} \begin{vmatrix} a_t = 0 \\ a_N = G \cdot \frac{M_S}{r^2} \end{vmatrix}$$

$$\vec{a} = \frac{dv}{dt} \cdot \vec{u} + \frac{v^2}{r} \cdot \vec{n}$$
 (4) : نعلم أن

$$\begin{vmatrix} a_t = rac{dv}{dt} = 0 \\ a_N = G.rac{M_S}{r^2} = rac{v^2}{r} \end{vmatrix}
ightarrow egin{vmatrix} v = cte & \Rightarrow & ext{initial distance} \\ r = G.rac{M_S}{v^2} = cte & \Rightarrow & ext{initial distance} \end{aligned}$$
الحركة دائرية

 $v=rac{2\pi.r}{T_J}$ $\Rightarrow v^2=rac{4\pi^2.r^2}{{T_J}^2}$: هي الدور المداري للمشتري و سرعته هي $v=rac{2\pi.r}{T_J}$ الدور المداري المشتري و سرعته العلاقة بين المداري المداري المداري المداري المشتري و سرعته العلاقة بين المداري المد

 $v^2 = G. \frac{M_S}{r}$: $a_N = G. \frac{M_S}{r^2} = \frac{v^2}{r}$ باعتبار العلاقة:

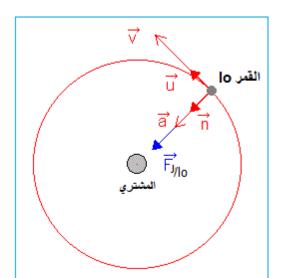
نحصل على:

$$\begin{bmatrix} v^2 = \frac{4\pi^2 \cdot r^2}{T_J^2} \\ v^2 = G \cdot \frac{M_S}{r} \end{bmatrix} \Rightarrow \frac{4\pi^2 \cdot r^2}{T_J^2} = G \cdot \frac{M_S}{r} \Rightarrow \frac{T_J^2}{r^3} = \frac{4\pi^2}{G \cdot M_S} :$$
قانون کیبلیر الثالث :

1.3-التحقق من قيمة الشعاع:

 $r=\sqrt[3]{rac{G.M_S.T_J^2}{4\pi^2}}$: مسب قانون کیبلیر : $r^3=rac{G.M_S.T_J^2}{4\pi^2}$: نستنتج : $r^3=rac{G.M_S.T_J^2}{4\pi^2}$ نستنتج : نستنتج عددي :

$$r = \sqrt[3]{\frac{6,67.10^{-11} \times 2.10^{30} \times (3,74.10^8)^2}{4\pi^2}} = 7,789.10^{11} m \rightarrow r \approx 7,8.10^{11} m$$


$$v = \frac{2\pi \cdot r}{T_I}$$

تطبيق عددى:

$$v = \frac{2\pi \times 7,8.10^{11}}{3,74.10^8} = 13\ 104\ m.\ s^{-1} \approx 1,31.10^4\ m.\ s^{-1}$$

M_I كتلة المشتري:

بالدراسة المماثلة للقمر |0 نستنتج قانون كيبلير الثالث : $\frac{T_J^2}{r^3} = \frac{4\pi^2}{G.M_S} : \frac{4\pi^2}{G.M_S} = \frac{4\pi^2}{r^{10}} = \frac{4\pi^2}{G.M_J} :$ بالنسبة لحركة القمر |0 حول المشتري نتوصل الى : $\frac{T_{Io}^2}{r^{13}} = \frac{4\pi^2}{G.M_J} :$ تعبير كتلة المشتري :

$$M_{J} = \frac{4\pi^{2}.r'^{3}}{G.T_{IO}^{2}}$$

تطبيق عددي:

$$M_J = \frac{4\pi^2 \cdot (4,2.10^8)^3}{6,67.10^{-11} \cdot (1,77 \times 24 \times 3600)^2} = 1,87.10^{27} \, kg$$