
***|

الامتحان الوطني الموحد للبكالوريا المسالك الدولية الدورة الاستدراكية 2021 - عناصر الإجابة –

HADIACH I IEVOCO HEALDH I SOXE (LECTO A tociti axxii A 199CA ATTL A 10XX LAGO

SSSSSSSSSSSSSSSS

RR 32E

المركز الوطني للتقويم والامتحانات

علوم الحياة والأرض 3h مدة الإنجاز المادة 7 شعبة العلوم التجريبية مسلك علوم الحياة والأرض (خيار أنجليزية) المعامل الشعبة أو المسلك

Key and marking scale

Questions	Response elements	scores		
	Section I : Knowledge retrieval (5 pts)			
I	Definitions (accept any correct definitions such as): - The meiosis: succession of two cell divisions, meiosis I followed by meiosis II and that gives four haploid cells from diploid mother cell. - Chromosomal abnormality: modification of the number or the structure of chromosomes or both.			
II	(1,b) ; $(2,d)$; $(3,b)$; $(4,d)$	0.5x4		
III	(a, false) (b, true) (c, true) (d, false)	0.25x4		
IV	1 : aster 2 : achromatic spindle 3 : centromere 4 : tetrad	0.25x4		
Sect	ion II: Scientific reasoning and communication in graphic and written modes (15	pts)		
	Exercise 1 (5pts)			
	a. Comparison (accept values close to the those proposed) +About blood lactate concentration: in healthy person, the lactate concentration increase from the beginning of the exercise to reach a maximum value (4.2 mol/l) at 2 min, then decreases to 2mmol/l at the end of the exercise while in affected person, the lactate concentration remains	0.75		
1	constant at 1.5 mmol/l along the exercice. +About ADP concetration in muscle of the forearm: -At rest ADP concentration in affected person (40 µM) is higher than four time that measured in healthy person (10 µM).	0.75		
	-After brief and intense physical exercise, the ADP concentration in two persons increases but this increase is more intense in affected person. (120μM >> 40μM) b. Proposal of a hypothesis (accept any correct hypothesis)	0.5		
2	Relationship between the variation of blood lactate concentartion and that of muscular ATP in sprinter during race of 100 m: -The muscular ATP concentration is almost constant while the blood lactate concentration incease progressively along the race. -The stability of muscle ADP concentration, depsite the exercise, is due to its regeneration from reactions of lactic acid fermentation (anaerobic reactions) at the origin of the increase of blood lactate concentration.	0.5 0.75		

الصفحة	_	R 32E	الامتحان الوطني الموحد للبكالوريا - الدورة الاستدراكية 2021 - عناصر الإجابة - مادة: علوم الحياة والأرض- شعبة العلوم التجريبية مسلك علوم الحياة والأرض (خيار أنجليزية)			
		Expl	fication of hypothesis: (proposed hypothesis is valid or not valid)anation:	0.25		
3		$\rightarrow w$	fected person by Mc Ardle disease: deficit of the activity of Myophosphorylase eak hydrolyse of muscle glycogen to glucose1-P formation of small amount acose6-P dysfunction of the lactic acid fermentation pathway weak			
		reger	neration of ATP at the beginning of the effort → intolerance to brief and intense cal efforts from the first tens seconds of the exercise	0.25x6		
			Exercise 2 (6.5 pts)			
		Proto	ein-trait relationship:			
1		hydro	nealthy person: the quantity of active myophosphorylase is 34 UA→ normal plyse of muscle glycogen → normal load of glycogen in muscle fiber with all regeneration of ATP from the beginning of muscular effort → healthy on.	0.25		
		- In affected person: weak quantity of active myophosphorylase (1UA) → weak muscle glycogen hydrolysis → overload of glycogen in muscle fiber with weak regeneration of ATP from beginning of muscular effort→ affected person				
		> Ti	he modification in the activity of the enzyme (protein nature) leads to odification of phenotype of the person so protein-trait relationship	0.25		
			RNA sequences and amino acids sequences corresponding to:	0.25×4		
		mRN				
2			no acid sequence: Ac.glu – Asn – Phe – Phe – Ile – Phe – Gly			
		- the	abnormal Allele:			
2		mRN				
		Amir	no acid sequence: Ac.glu – Asn – Phe –Ile –Phe – Gly			
			xplanation of the genetic origin of disease: tion by deletion of triplet in untranscribded stand (DNA)→ synthesis of			
		modi	fied mRNA in relation to normal mRNA — synthesis of amino acids sequence			
		differ	rent in relation to the normal \rightarrow weak activity of to myophosphorylase			
		→dis	ease symptoms appear	0.5		
		Acce	pt a mutation by deletion of triplet such as: ITC at the level of positions (2125, 2126, 2127) or (2128, 2129, 2130). CTT at the level of positions (2124, 2125, 2126) or (2127, 2128, 2129).			

الصفحة 3	سر الإجابة س (خيار أنجليزية)	استدراكية 2021 ــ عناه مسلك علوم الحياة والأرط	يا - الدورة اا لوم التجريبية	الوطني الموحد للبكالور نياة والأرض- شعبة الع	الامتحان ا مادة: علوم الد	
	a. Mode of transmission of the disease: - Responsible allele for disease is recessive (m) and normal allele is dominant (M)					0.25
	Justification: the couple I ₁ and I ₂ are healthy and gave birth to a sick boy II ₂ (also accept: the couple II ₅ and II ₆ are healthy and gave birth to a sick girl III ₂)					
	The studied gene is carried by an autosome Justification:					
	-The disease is present in both sexes→ the studied allele is not carried by sexual chromosome Y					0.35
	-The responsible allele the responsible allele for	is recessive→ the gir	l III ₂ is sic	k and her father is	healthy so	0.25 0.25
	- The genotypes and ju	istification:	by s	exual chromosome	· X	0.75
3	I1: M//m healthy woma	n having a sick child				0.75
	II ₂ : m//m sick man.	41: 1 6 1 -4				
	II3: M//m or M//M heal	thy girl from heteroz	ygous pare	ents.		
	b. The probabilit	y for that expected	child will	be healthy:		
	Parents :	II ₅ x	II_6			
	Phenotypes :	[M] x	[M]		
	Genotypes :	M//m	M//1			
	Gametes :	½ M/; ½ m/	½ M /;	½ m/		0.25
	Punnet square :	1/25/				
	Gametes ½ M/ ½ m/					
	½ M/ ½ m/	½ M//M ¼ M//m	[M] [M]	½ M//m ¼ m//m	[M]	0.5
	The probability for th				[m]	0.25
		-		•		1
	a. The frequency of two allele M and m: we have: f (m//m)=1/167000= q ² this population abides by the Hardy- Weinberg equilibrium					•
	so: -The frequency of allele m: $f(m) = q = \sqrt{1}/167000 = 0.002447$. -The frequency of allele M: $f(M) = p = 1 - q = 0.997553$.					
	N.B: also accepts the following numerical application: $f(m/m)=1/167000=q^2=0.000005$					
4	-The frequency of allele m: $f(m) = q = \sqrt{0.000005} = 0.002236$					
	-The frequency of allele M: $f(M) = p=1-q=0.997764$.					
	b. The frequency of healthy carrier of disease :					0.5
	the healthy carried are heterozygous (M//m) \rightarrow the frequency of healthy carrier in					
	studied population is $f(M//m)=2pq=2\times0.002447\times0.99753\approx0.004882$					
	N.B: also accepts the following numerical application: $f(M//m)=2pq=2\times0.002236\times0.997764\approx0.004462$					
	J (IVI	$\frac{(m)-2pq-2\times 0.002}{\text{Exercice 3 (3.}}$		7/04~0.004402		
	The generation of F ₁ is composed of black and smooth seeds, so:					
1	- The responsible allele for black color of seeds is dominant N and responsible					
1	allele for yellow color of seeds is recessive n .					0.25×2
	- The responsible allele for smooth shape of seeds is dominant L and responsible allele for rough shape of seeds is recessive ℓ .					
	MAGNAGA ALLA ALLA	a famous ala ala				

الصفحة 4	ني الموحد للبكالوريا - الدورة الاستدراكية 2021 - عناصر الإجابة والأرض- شعبة العلوم التجريبية مسلك علوم الحياة والأرض (خيار أنجليزية)	الامتحان الوط - مادة: علوم الحياة				
2	- two minority recombined phenotypes [N, L] et [n, ℓ] (20%)					
	So the two genes are (partially) linked. - Deduction: The distance between the two genes is 20cMg					
	-The genotypes: $P_1: \begin{array}{ccc} \frac{N - \ell}{N - \ell} & P_2: & \frac{n - L}{n - L} & F_1: \end{array}$	$\frac{N \ell}{n L}$).25x3			
	The chromosomal interpretation of result of cross 2:		1			
2	Genotypes : $\frac{N \ell}{n L}$ $\frac{n \ell}{n \ell}$					
3	$\frac{N}{40.2\%} \frac{\ell}{39.8\%} \frac{n}{9,9\%} \frac{n}{10,1\%} \frac{\ell}{100\%}$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	Punnet square :	<u>ℓ</u>				
	$ \frac{\mathbf{n} \boldsymbol{\ell}}{100\%} \qquad \frac{\mathbf{N} \boldsymbol{\ell}}{\mathbf{n} \boldsymbol{\ell}} \qquad \frac{\mathbf{n} \mathbf{L}}{\mathbf{n} \boldsymbol{\ell}} \qquad \frac{\mathbf{N} \mathbf{L}}{\mathbf{n} \boldsymbol{\ell}} \qquad \frac{\mathbf{n}}{\mathbf{n}} $ $ [\mathbf{N}, \boldsymbol{\ell}] \qquad [\mathbf{n}, \mathbf{L}] \qquad [\mathbf{n}, $					
4	The cross that allows to obtain of the lineage P3 is (accept any logica justification): To obtain plants of pure lineage P3 black and smooth seeds (domina the parents must have a dominant phenotype for two traits. So we plants [N, L] with the genotype N & & between them.	nt phenotype),	0.5			
	n l					