الثانوية التأهيلية أيت باها	لبسم الله الرحمان الرحيم	الأستاذ: رشيد جنكل
نيابة أشتوكة أيت باها	فرض محروس رقم 1 الدورة الأولى	القسم: 2 باك علوم رياضية
المدة: ساعتان	السنة الدراسية : 2016 / 2016	المادة: الفيـــزياء والكيمـياء

نُعطى الصيغ الحرفية (مع النّاطير) قبل النّطبيقات العددية

مصح الطبيع الطاقته (مع البيطنا) جنل البطنتوري العددته	
♦ الفيزياء (13,00 نقطة) (80 دقيقة)	التنقيط
井 التمرين الأول: دراسة الموجات فوق الصوتية (4,75 نقطة) (30 دقيقة)	
الموجات فوق الصوتية موجات ثلاثية البعد ذات أدوار صغيرة مقارنة مع الموجات الصوتية المسموعة ، يزيد ترددها على	
20KHz . تنتشر في الأوساط المادية الصلبة و السائلة والغازية عن طريق إنضغاط وتمدد طبقات وسط الإنتشار .	
توجد في الطبيعة عدةً حيوانات تستعملها للتواصل فيما بينها او لتحديد موقع فريستها.	
سرعة انتشار الموجات فوق الصوتية في الهواء هي v=340m/s.	
 الجزء الأول: عموميات حول الموجات فوق الصوتية 	
1. ما الفرق بين الموجات فوق الصوتية والموجات الصوتية ؟	0,5 ن
2. هل الموجات فوق الصوتية موجات ميكانيكية أم كهرمغنطيسية ؟ علل جوابك	0,5 0,5 ن
 حدد طبيعة الموجة فوق الصوتية : مستعرضة ام طولية ، علل جوابك 	0 0,5
 الجزء الثاني: تحديد موقع الفريسة 	
يرسل نوع من الخفافيش دفعة من الموجات فوق الصوتية ترددها $N=83kH$ خلال مدة زمنية Δt =36 m .	
$\frac{1}{4}$. احسب الدور T و طول الموجة χ لهذه الموجات فوق الصوتية	1 ن 0,25 ن
5. احسب K عدد الأدوار الذي تحتوي عليه هذه الدفعة	0,23
من ارسالها. ما المسافة d الفاصلة بين $ au=20$. تنعكس هذه الدفعة بعد اصطدمها بالحاجز، يستقبلها الخفاش بعد مرور	0,5 ن
الخفاش و الحاجز ؟	
7. ادا علمت ان سرعة انتقال الخفاش هي v'=36Km/h و أن الفريسة ثابتة في مكانها، حدد المدة الزمنية اللازمة لكي ينقض	0,5 ن
الخفاش على فريسته	
$\lambda_{ m air}$ و الهواء هي $N=8$ الإنسان ترددها $N=8$ طول موجتها في الهواء هي $\lambda_{ m air}$	1 ن
وفي ماء البحر هي $\lambda_{ m eau} = 18,75$ ، حدد سرعة انتشار هذه الموجة الصوتية في كل من الوسطين	
 التمرين الثانى :دراسة ظاهرة الحيود ، الإنكسار والتبدد (8,25 نقط) (50 دقيقة) 	
· الجزء الأول: تحديد قطر فتحة دائرية (4,00 نقط)	
a نعرض حزمة ضوئية لضوء أحادي اللون طول موجته في الفراغ والهواء $\lambda_0=633$ الحاجز به فتحة دائرية قطرها	
، نضع الشاشة على بعد $D=2,35 m$ من الحاجز . حيث أن شعاع البقعة المركزية هو $R=1,1 cm$	
$ heta=1,22rac{\lambda_0}{a}$ نعبر عن الفرق الزاوي في هذه الحالة ب	
$\frac{-3-2}{a}$. $\frac{3}{a}$	0,75 ن
 من التركيب التجريبي مبررا الاستماع R و 10 و 6 في التبيات صف ما تشاهده على الشاشة ، ما إسم الظاهرة ، ثم إستنتج طبيعة الضوء 	0,75 ن
ho عن الفرق الزاوى $ heta$ بدلالة $ ho$ و D	0,25 ن
4 استنتج العوامل الموثرُّ وعلى هذه الظاهرة معللا حوالك بعلاقة اللون ابنفسجي أزرق أخضر	1ن م:
م الفتحة الدائرية هو a = 165 um مطول الموجة ب nm طول الموجة ب a = 165 um	0,5 ن 0,75 ن
nm ب منبع اللازر بمنبع أخر طول موجته λ فنحصل على بقعة مركزية قطرها $d=1,54~\mathrm{cm}$ ، حدد قيمة λ ب t	0 0,73
 الجزء الثاني: تحديد معامل الإنكسار و إبراز ظاهرتي الإنكسار والتبدد (4,25 نقط) 	0,5 ن
$ m c=3.10^8~m/s$ نعتبر إشعاع موجةً ضوئية ذات طول موجة في الفراغ مرافع موجةً أحسب تردد الإشعاع ، نعطي $ m c=3.10^8~m/s$	0,5 ن
2. يرد هذا الإشعاع الضوئي على وجه موشور متساوي الأضلاع $AB = AC$ بزاوية i ، فينبثق منه منكسرا بزاوية $AB = AC$	
$^{\circ}$ i'=67,78° و منحرفا بزاوية 57,78 $^{\circ}$. علما أن زاوية الموشور هي $^{\circ}$ i $^{\circ}$ حدد زاوية الورود $^{\circ}$	
$ m . \ k=rac{\sin i}{\sin i}$ بحيث $ an r=rac{\sin A}{\cos A+rac{1}{a}}$. $ m . 3$	1 ن
$\sin i$ $\cos A + \frac{1}{1}$	
k نعطي sin(a–b)=sina.cosb-cosa.sint ، معامل إنكسار الهواء يساوي 1	
اااد - اااد عادی - Sili(a-b) = Silia.cosb-cosa.sinc	

4. حدد r قيمة زاوية الإنكسار على الوجه الأول AB للموشور 5. حدد r زاوية الورود على الوجه الثاني AC للموشور 6. حدد r زاوية الورود على الوجه الثاني AC للموشور 6. بين أن قيمة معامل الانكسار r بالنسبة لهذا الشعاع هي r r استنتج قيمة طول الموجة r للشعاع داخل الموشور 7. إستنتج قيمة طول الموجة r للشعاع داخل الموشور 8. نعوض الإشعاع السابق بحزمة ضوئية من الضوء الأبيض ، ما الظاهرة التي سيتم إبرازها ؟ وماذا سنشاهد على الشاشة الموضوعة أمام الأشعة المنبثقة من الموشور؟	
الكيمياء (7,00 نقط) (40 دقيقة)	التنقيط
井 التمرين الثالث: التتبع الزمني لتحول كيميائي ، سرعة التفاعل	
لقياس كمية الكحول CH_3CH_2OH (الايثانول) في الدم، نأخذ عينة منه، ونقوم بإزالة اللون فنقيس كمية مادة الكحول في العينة المدروسة اعتمادا على المعادلة الكيميائية التالية : $3 \ CH_3CH_2OH_{(aq)} + 2 \ Cr_2O_7^{2-}_{(aq)} + 16 \ H^+_{(aq)} ightarrow 3 \ CH_3COOH_{(aq)} + 4 \ Cr^{3+}_{(aq)} + 11 \ H_2O_{(l)}. هذا التحول تام و بطيء ، نتتبع تطوره عن طريق قياس الطيف الضوئي بواسطة جهاز يسمى مستضو طيفي : 3 \ CH_3CH_2OH_{(aq)} وهي تقنية غير مدمرة$	
الأنواع الكيميائية Cr ³⁺ CH ₃ COOH Cr ₂ O ₇ ²⁻ CH ₃ CH ₂ OH Cr ₂ O ₇ CH ₃ CH ₂ OH	
لون المحلول غير ملون اصفر برتقالي غير ملون اخضر	
المعطيات: الكتلة المولية للايثانول M(CH3CH2OH)=46g/mol	
1 -اختيار طريقة التتبع. 1-1- لماذا يمكن تتبع هذا التحول الكيميائي بواسطة تقنية قياس الطيف الضوئي 1-2- لماذا يمكن وصف هذه التقنية بأنها " تقنية غير مدمرة " ؟	ن 0,25 ن 0,25
2- التتبع الزمني للتحول: تتبع الايونات المتبقية من تنائي كرومات $\operatorname{Cr_2O_7^{2-}}_{(\operatorname{aq})}$ بالوسط	
$Cr_2O_7^{2-}_{(aq)}$ نجهز جهاز قياس الطيف الضوئي و نضبط طول الموجة على القيمة $\lambda=420$ ميث أيونات تنائي كرومات $Cr_2O_7^{2-}_{(aq)}$ تمتص هذا الضوء بينما أيونات الكروم Cr^{3+}_3 لا تمتصه.	
عند اللحظة 0 = انمزج 2mL من دم مأخود من ذراع سائق مع 10mL من محلول مائي لتنائي كرومات البوتاسيوم المحمض (C=0,02mol/L) تركيزه المولي C=0,02mol/L. الحجم الإجمالي للخليط المتفاعل هو V = 12,0mL يحرك الخليط التفاعلي و توضع عينة منه بسرعة في جهاز قياس الطيف الضوئي (spectrophotomètre) متصل بحاسوب فيقيس <u>A امتصاصية Absorbance ا</u> لخليط المتفاعل بدلالة الزمن فنحصل على النتائج المدونة في المنحني أسفله	
1-2 نضع n₁ كمية المادة البدئية للكحول المتواجد	0,75 ن
بالدم و n_2 كمية المادة البدئية لثناني كرومات التي أدخلت على خليط التفاعل و H^+ وافرة في التي أدخلت على خليط التفاعل و H^+ وافرة في الوسط . أنشئ الجدول الوصفي للتحول . H^- 2.48 H^- 2.48 H^- 2.49 اعتمادا على الجدول الوصفى حددتركيز H^- 2.49 H^- 2.40 H^- 2.40 H^- 3.40 H^- 3.4	0,5 ن
ايونات تنائي كرومات $[Cr_2O_7^{2-}_{(aq)}]$ في الخليط (t) عند اللحظة (t) بدلالة تقدم التفاعل (t) و حجم (t) عند اللحظة (t) بدلالة تقدم التفاعل (t) و حجم الخليط المتفاعل (t) و كمية المادة (t) (t) امتصاصية للخليط ب (t) $(t$	1 ن
$Cr_2O_7^{-1}$ بالعلاقة التالية: $Cr_2O_7^{-2}$ بالعلاقة التالية: $Cr_2O_7^{-2}$ بالعلاقة التالية: $A(t) = 150.[Cr_2O_7^{-2}]_t$ بين أن العلاقة بين الامتصاصية A و تقدم التفاعل $A(t) = 150.[Cr_2O_7^{-2}]_t$	
في لحظة t تكتب على شكــــــــــــــــــــــــــــــــــــ	1ن
4_2 التحول كلي، بالاستعانة بالمنحنى $A=f(t)$ ، احسب التقدم الأقصى $x_{ m m}$ ثم استنتج أن المتفاعل المحد هو الايثانول CH_3CH_2OH .	
5-2- كمية الكحول المسموح به هي 0,5g في (1L) من الدم. هل السائق خرق القانون. 3- السرعة الحجمية للتفاعل	1 ن
$v=-rac{4.10^{-3}}{V}.rac{dA}{dt}$. $v=-rac{4.10^{-3}}{V}.rac{dA}{dt}$. $v=-rac{4.10^{-3}}{V}.rac{dA}{dt}$. $v=-1$.	0,5 ن 1 ن
المتحكم في ذلك	
$t_{1/2}$ عند $t_{1/2}$ فان $A(t_{1/2})=2,445$. استنتج قيمة زمن النصف $t_{1/2}$. الله ولي التوفيق حظ سعيد للجميع	0,75 ث

الثانوية التأهيلية أيت باها		لبسم الله الرحمان الرحيم	ي ن	یــد جنــ	الأستاذ: رش
نيابة أشتوكة أيت باها		عناصر الإجابة لفرض حروس رقم 1 الدو	سلك البكالوريا	أ الثانية من ا	القسم: السنة
المدة: ساعتان	2	السنة الدراسية : 2016 / 2015		م رياضية	الشعبة: علق
مرجع السؤال في الإطار المرحعي	سلم التنقيط		عناصر الإجابة	السؤال	التمرين
• إقتراح تبيانة تركيب تجريبي يسمح	0,75ن	يبي مع وضع الأسماء	رسم التركيب التجرب	.1	
بابراز ظاهرة حيود الضوء • معرفة أشكال حيود الضوء بواسطة	3 × ن 0,25	قعة ضوئية مركزية تحيط بها حلقات تارة ضوئية وتارة	نشاهد على الشاشة ب	.2	التمر
شق (فتحة) ، سلك رفيع أوثقب • معرفة الطبيعة الموجية من خلال		ءة كل ما إبتعدنا عن الوسط بظاهرة حيود الضوء			3
انجاز ظاهرة الحيود		عة موجية ٌ لأننا استطعنا إنجاز ظاهرة الحيود			الثاني
 استثمار و استغلال شكل حيود 	ن0,25	· D • R עוווי א עוווי א די	تعبير الفرق الزاوي	.3	ર્ગ <u> </u>
الضوء يو	- /	_	بير ول وري من خلال الشكل لدين		: الع لتنق
		$oldsymbol{ heta} = rac{R}{D}$ إذن $oldsymbol{ heta} = rac{R}{D}$ أذ	وباعتبار $ heta$ صغير		الجرء ا بقيط :
	4 × ن0,25	يثرة على ظار هة الحيود:	استنتاج العو امل المؤ	.4	، الأول : 4,00
 معرفة تأثير بعد الفتحة على ظاهرة 	1 30,25	لسابقتین : $\frac{\lambda_0}{a}$ و $\frac{R}{a}$ و خصل علی	-	, .	ِ درا 4 نق
الحيود			$R = \frac{1,22D\lambda_0}{a} :$		دراسة 4 نقطة
 معرفة العوامل المؤثرة على ظاهرة الحيود 		هي عرض الشق a و D المسافة الفاصلة بين اشة وطول الموجة λ_0			ظاهرة
 إستثمار علاقات ظاهرة الحيود 	0,25ن	a = 165 (الطريقة)		.5	
 معرفة حدود أطوال الموجات في الفراغ للطيف المرئى والالوان 	3×ن0,25	$\lambda = \frac{ad'}{d}$	التعبير الحرفي:	.6	الحيو
المطابقة لها		$\lambda = 443 \text{ nm}$	التطبيق العددي :		δ
معرفة وتطبيق العلاقة : λ = v.T	2 × ن0,25	من اللازر : بنفسجي C		.1	_
// V.1 . 334. Q., 3 4.74	2 × 50,23	$ \lambda = \frac{\lambda}{\lambda_0} $ $ \lambda = 4.78.10^{14} \text{ Hz} $	التعبير الحرفي : التطبيق العددي ·	.1	التمرين
• معرفة علاقات الموشور	2 × ن0,25		زاوية الورود i :	.2	<u>.3</u>
S. M. and March	.0.75	i = 50° : التطبيق العددي : i = D + A –			الثاني
 استغلال علاقات الموشور معرفة قوانين ديكارت 	0,75ن الطريقة	شور : لدينا n.sin(r)=sin(i) و مع r ² =A-r	n.sin(r')=sin(i')	.3	
		n.sin(A-r)=n.[sin(A).cos(r)-cos(A).sin n.[sin(A).cos(r)-cos(A).sin(r)]/ n.sin(r)=			<u>r</u>
		$[\sin(A)/\tan(r)] - \cos(A) = 1/K$ $\mathbf{k} = \frac{\sin i}{\sin x} = \sin x$	4		ء الث
		$\mathbf{k} = \frac{\sin \mathbf{i}}{\sin \mathbf{i}} \mathbf{tan r} = \frac{\sin \mathbf{i}}{\cos \mathbf{A}}$	$\frac{1}{k}$		اع تا
• إستغلال علاقات الموشور	0,5ن	ر على الوجه الأول AB للموشور : °r = 26,88		.4	: د <u>را</u> نقيع
	0,5ن	رد على الوجه الثاني AC للموشور :°33,12		.5	ል 5 ት : ት
 إستغلال قوانين ديكارت للإنكسار 	0,25ن الطريقة	$n=1,7$ الانكسار n بالنسبة لهذا الشعاع هي $n=1,7$ اينن $n=rac{\sin t}{\sin r}$ ت . ع $n=1,7$	لنبين أن قيمة معامل لدينا (sin(r)-sin(i	.6	الجزء الثاني: دراسة ظاه التنقيط : 4,25 ن
• تعریف معامل أنكسار وسط شفاف	2 × ن0,25	الشعاع داخل الموشور :		.7	امرة تقط
 معرفة أن تردد إشعاع أحادي اللون 	2 30,20	λ = 368 ,82 nm الذن $\frac{\lambda_0}{n}$ ث. ع $n = \frac{c}{v}$.,	ועָ יצ _
لا يتغير عند إنتقاله من وسط شفاف الى اخر		,,	nn n		يآ
• معرفة الإبراز التجريبي لظاهر	2 × ن0,25	هد على الشاشة الوان الطيف الضوئي	ظاهرة التبدد ، سنشا	.8	ظاهرة الإنكسار والتبدد 4,2 نقط
التبدد • معرفة ان الأوساط الشفافة مبددة					تبزر
للضوء بدرجات مختلفة					

بيبية صوتية	 معرفة وإستغلال الخو للموجات إبراز موجة متوالية ج باستعمال راسم التذبذ 	2 × ±0,25	الفرق بين الموجات فوق الصوتية والموجات الصوتية الموجات فوق الصوتية هي موجات ميكانيكية غير مسموعة من طرف الإنسان ترددها اكبر من KHz و 20 Hz ميكانيكية مسموعة من طرف الإنسان ترددها محصور بين Hz و 20 KHz و KHz	.1	II.
َيكية - يكية	• تعريف الموجة الميكان	2 × ن0,25	الموجات فوق الصوتية موجات ميكانيكية لأنها تحتاج الى وسط مادي لإنتشارها	.2	لتمرين
بة والموجة	 تعريف الموجة الطوليا المستعرضة 	2 × ن0,25	الموجات فوق الصوتية موجات طولية لأن إتجاه التشويه (تمدد و إنضغاط طبقات الهواء) موازي لمنحى الإنتشار	.3	الأول ا
	 معرفة وتطبيق العلاقة تعريف الدور والتردد 	2 × ن0,25	$T=1,2 \ .10^{-5} \ s=12 \ us$: $T=\frac{1}{N}$: $T=1,2 \ .10^{-5} \ s=12 \ us$: $T=\frac{1}{N}$ حساب الدور $T=1,2 \ .10^{-5} \ s=12 \ us$: $T=1,2 \ .10^{-5} \ s=12 \ us$ حساب طول الموجة : $T=1,2 \ .10^{-5} \ s=12 \ us$.4	دراسة لتنقيط :
		2 × ن0,25	$\lambda = 4.09 \cdot 10^{-3} \text{ m} = 4.09 \text{ mm} \approx 4.1 \text{ mm}$ ت. ع		
الية الجيبية و	 تعريف الموجة المتوا الدور 	0,25ن	حساب عدد الأدوار الذي تحتوي عليه دفعة من الموجات المنبعثة من الخفاش خلال مدة زمنية $ m K = rac{\Delta t}{T} = 3000$: $ m \Delta t = 36ms$.5	الموجات 4,75نفطة
	 إستغلال العلاقة بين الوالمسافة وسرعة الإنة 	2 × ن0,25	تحدید المسافة الفاصلة بین الخفاش والحاجز : $d=3,4~ ext{m}$. $d=rac{2d}{r}$ لدینا $v=rac{2d}{r}$.6	ت فوق طة
		2 × ن0,25	المدة الزمنية Δt اللازمة لكي ينقض الخفاش على فريسته $\Delta t=3,4.10^{-1}~{ m s}=0,34~{ m s}$ ث ع $\Delta t=rac{d}{\Delta t}$ إذن $\Delta t=rac{d}{v'}$ ا	.7	، الصوتية
$\lambda = v.T^{-2}$	• معرفة وتطبيق العلاقا	2 × ن0,5	سر عة انتشار الصوت في كل من الوسطين سر عة انتشار الصوت في كل من الوسطين سر عة الانتشار في الهواء نعلم ان $V_{air}=rac{\lambda}{T}=\lambda.N$.8	<u>.</u> g.
			$V_{air}=4,25. 10^{-2}. 8.10^3=340~m/s$ تطبيق عددي $V_{eau}=rac{\lambda}{T}=\lambda. \mathrm{N}$ نطبيق عددي $V_{eau}=18,75. 10^{-2}. 8.10^3=1500~m/s$ تطبيق عددي		
-	 تعليل مختلف العمليات خلال تتبع التطور الز 	2 × ن0,25	يمكن تتبع هذا التحول بواسطة تقنية قياس الطيف الضوئي لأن هذا التحول يستهلك وينتج أنواع كيميائية ملونة	1.1	_
ِيبية	وإستثمار النتائج التجر	2× ن0,25	هذه النقنية يمكن وصفها بأنها " تقنية غير مدمرة " لأننا نقوم بقياسات دون تغيير محتوى الخليط المتفاعل	2.1	التمرين
الوصفي	• معرفة إنشاء الجدول ا التفاعل	0,75ن	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.2	ن الثالث :
	 معرفة إستغلال الجدو العلاقة بين التركيز و 	0,5	ر كيز ايونات تنائي كرومات $[\mathrm{Cr_2O_7}^2]$ في الخليط عند اللحظة n_2 : n_2 تقدم النفاعل n_3 و حجم الخليط المتفاعل n_3 و كمية المادة $n(\mathrm{Cr_2O_7^2})=n_2-2x$, donc $[\mathrm{Cr_2O_7^2}]=\frac{n_2-2x}{\mathrm{V}}$	2.2	الكيمياء : ا سرعا التنقي
جم	 معرفة المقادير المرتبالمادة : التركيز ، الحادة : المتثمار النتائج التجريا 	1ن	لنبين أن العلاقة بين الامتصاصية A و تقدم التفاعل في لحظة f نكتب على $ x(t) = [10-4.A(t)].10^{-5}: $ الشكل التالي f	3.2	اللتتبع الزمني لته ة التفاعل يط : 7,00
المحد	 معرفة تحديد التقدم الق معرفة تحديد المتفاعل استثمار النتائج التجري 	2 × ن0,5	لنحسب التقدم الأقصى عند نهاية التحول. $(x=x_{\rm max},A=A_{\infty})$ مبيانيا $A_{\infty}=2,39$ عند نهاية التحول. $(x=x_{\rm max},A=A_{\infty})$ مبيانيا $x_{\rm max}=(10-4,0A_{\infty})\times 10^{-5}=(10-4,0\times 2,39)\times 10^{-5}$ $x_{\rm max}=4.4\times 10^{-6}$ mol. $Cr_2O_7^{-2}$ (aq) متفاعل محد نجد ان $x_{\rm max}=1,10^{-4}$ mol عليها تجريبيا نجد ان المتفاعل المحد الايثانول $x_{\rm max}=1,10^{-4}$ سامت و منه نستنتج أن المتفاعل المحد الايثانول $x_{\rm max}=3,5\cdot 10^{-4}$ mol. $x_{\rm max}=3,5\cdot 10^{-4}$	4.2	لتحول كيميائي ،

 معرفة إستثمار النتائج التجريبية معرفة المقادير المرتبطة بكميات المادة : التركيز ، الحجم 	ان	$n_0-3x_{\max}=0$ الكحول متفاعل محد $n_0-3x_{\max}=0$ $n_0=3x_{\max}=3 \times 4,4 \times 10^{-6}=1,3 \times 10^{-5} \mathrm{mol}$ $m_0=3x_{\max}=3 \times 4,4 \times 10^{-6}=1,3 \times 10^{-5} \mathrm{mol}$ في حجم $m_1=m_0 \times \frac{1,0}{2,0 \times 10^{-3}}=n_0 \times \mathrm{M}(\mathrm{\acute{e}thanol}) \times 500=1,3 \times 10^{-5} \times 46 \times 500 \mathrm{V=IL}$ في حجم $m_1=0,30 \mathrm{g}$ $m_1=0,30 \mathrm{g}$	5.2	
 معرفة تعبير السرعة الحجمية وتحديد تعبيرها بواسطة معطيات تجريبية أو استثمار نتائج تجريبية 	ن0,5	لنبين أن تعبير السرعة الحجمية للتحول تكتب على الشكل التالي : $v=-\frac{4.10^{-5}}{V}\cdot\frac{dA}{dt}$. $v=\frac{4.10^{-5}}{V}\cdot\frac{dA}{dt}$. $v=\frac{1}{V}\cdot\frac{dx}{dt}$. $v=\frac{1}{V}\cdot\frac{dx}{dt}$. $v=\frac{1}{V}\cdot\frac{dx}{dt}$. $v=\frac{4.10^{-5}}{V}\cdot\frac{dA}{dt}$. $v=\frac{4.10^{-5}}{V}\cdot\frac{dA}{dt}$. $v=\frac{4.10^{-5}}{V}\cdot\frac{dA}{dt}$	1.3	
 معرفة إستغلال تعبير السرعة الحجمية تفسير كيفيا تغير السرعة الحجمية معرفة أن السرعة الحجمية تتزايد عموما مع تزايد تراكيز المتفاعلات وارتفاع درجة الحرارة 	ċ0,5 ċ0,25 ċ0,25	قيمة السرعة الحجمية عند اللحظة $t=0$ هي $v=-\frac{4.10^{-5}}{12.10^{-3}} = \frac{2.50-2.38}{0-2.5} = 1,6.10^{-4} mol/L.min$ $v=-\frac{4.10^{-5}}{12.10^{-3}} = \frac{2,67.10^{-6} mol/L.s}{0-2.5}$ السرعة الحجمية للتفاعل تتناقص مع مرور الزمن والعامل المتحكم في ذلك هي تناقص التراكيز البدئية للمتفاعلات	2.3	
 معرفة زمن نصف التفاعل تحديد زمن نصف التفاعل بواسطة معطيات تجريبية إو إستثمار النتائج التجريبية 	ċ0,5 ċ0,25	$x(t_{1/2})=x_{max}/2$ عند $t_{1/2}$ عند $t_{1/2}=x_{max}/2$ عند $t_{1/2}=-[x(t_{1/2})/10^{-5}-10]/4=0$ ومنه $t_{1/2}=-[x(t_{1/2})/10^{-5}-10)/4=2,445=0$ وبعملية الإسقاط نجد مبيانيا ان قيمة زمن النصف $t_{1/2}=3,75$ min.	3.3	

حظ سعيد للجميع

الله ولي التوفيق