تصحيح الفرض رقم 2

فيزياء 1:

ا-الجزء الاول:

حسب قانون -إثبات المعادلةالتفاضلية:

حسب قانون إضافية التوترات :

$$u_R + u_C = E$$

$$Ri + u_C = E$$

$$i = \frac{dq}{dt} = \frac{d(Cu_C)}{dt} = C\frac{du_C}{dt}$$
: لدينا

$$RC\frac{du_C}{dt} + u_C = E$$

التحقق من أن التعبير $u_{C}=E\left(1-e^{-rac{t}{t}}
ight)$ هو حل للمعادلة التفاضلية-2

 $u_{\mathcal{C}}=E\left(1-e^{-rac{t}{ au}}
ight)=E-Ee^{-rac{t}{ au}}$ حل المعادلة التفاضلية هو

$$\frac{du_C}{dt} = -E\left(\frac{-1}{\tau}\right)e^{-\frac{t}{\tau}} = \frac{E}{\tau}e^{-\frac{t}{\tau}}$$

شكل 1

نعوض في المعادلة التفاضلية :

$$RC\frac{E}{\tau}e^{-\frac{1}{\tau}} + E - Ee^{-\frac{1}{\tau}} = E \implies Ee^{-\frac{1}{\tau}}\left(\frac{RC}{\tau} - 1\right) = 0$$

. $t\geq 0$ هو حل للمعادلة التفاضلية ، بحيث $\left(\frac{RC}{ au}-1
ight)=0$ بالنسبة للمتغير $u_{\mathcal{C}}=E\left(1-e^{-rac{t}{ au}}
ight)$

$$au=R.C$$
 : ومنه عبير au حسب السؤال السابق $au=0$ ومنه : عديدتعبير au

: au البعد الزمني ل

لدىنا :

$$\begin{cases} U_R = R.i & \Rightarrow R = \frac{u_R}{i} \\ i = C\frac{du_C}{dt} \Rightarrow C = \frac{i}{\frac{du_C}{dt}} \end{cases} \Rightarrow \begin{cases} [R] = \frac{[U]}{[I]} \\ [C] = \frac{[I]}{[U].[t]^{-1}} \end{cases} \Rightarrow [\tau] = [R].[C] = \frac{[U]}{[I]}.\frac{[I].[t]}{[U]} \Rightarrow [\tau] = [t]$$

إذن ل au بعد زمنی

au التحديد المبياني لau

مبيانيا au هي أفصول نقطة تقاطع المماس للمنحنى $u_{C}(t)$ عند $u_{C}=E$ والمقارب $u_{C}=E$ أنظر

: C التحقق من قيمة

لدينا :

$$\tau = RC \Rightarrow C = \frac{\tau}{R}$$

ت.ع :

$$C = \frac{1}{10.10^3} = 10^{-4} \text{ F}$$

أو

$$C = 100 \, \mu F$$

t(s)

الشكل2

 $u_{C}(V)$

A=E= 25

5-حساب الطاقة الكهربائية التي يختزنها المكثف في النظام الدائم

تعبير الطاقة الكهربائية:

$$E_e = \frac{1}{2}C.u_C^2$$

 $u_C = E$: في النظام الدائم لدينا

$$E_e = \frac{1}{2}C.E^2$$

$$E_e = \frac{1}{2} \times 10^{-4} \times 12^2 = 7,2.10^{-3} J$$
 : ت.ع

اا-الجزء الثاني :

: مقاومة الموصل الأومي $\,r\,$

$$u_C = 360. e^{-\frac{t}{\tau'}}$$

$$au' = -rac{t}{\ln(rac{u_C}{E})}$$
 : ومنه $e^{-rac{t}{ au'}} = lnrac{u_C}{E}$ ومنه $e^{-rac{t}{ au'}} = rac{u_C}{E}$: أي

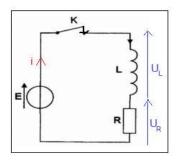
: نان au'=r. نان نان

$$r = -\frac{t}{C.\ln(\frac{u_C}{E})}$$

$$r = -\frac{2.10^{-3}}{10^{-4} \times \ln(\frac{132,45}{360})} = 20\Omega$$
 : ق.غ

 $5 au=5r.\,C$ لأن مدة النظام الانتقالي هوr عند المقاومة الخيار قيمة أصغر للمقاومة -2

فيزياء 2 :



1-دور الوشيعة عند إغلاق قاطع التيار هو تأخير إقامة التيار .

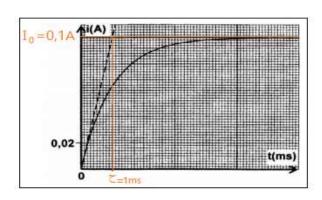
2-إثبات المعادلة التفاضلية :

$$E = u_L + u_R$$
 : قانون إضافية التوترات

$$E = L\frac{di}{dt} + Ri$$
 : قانون أوم

: تكتب i المعادلة التفاضليةالتي تحققها شدة التيار

$$\frac{L}{R}.\frac{di}{dt} + i = \frac{E}{R}$$



RL -تمثل au ثابتة الزمن وهي تميز ثنائي القطب قيمتها نحددها مبيانيا أنظر الشكل جانبه:

 $i=I_0$ يقطع مماس المنحنى i(t) عند t=0 عند t=1ms في اللحظة

au و I_0 تعبیر کل من I_0 و

$$i(t)=I_0\left(1-e^{-rac{t}{ au}}
ight)=I_0-I_0.e^{-rac{t}{ au}}$$
 : لدينا

$$rac{di}{dt} = rac{I_0}{ au}.e^{-rac{t}{ au}}$$
 : ومنه

نعوض في المعادلة التفاضلية

$$I_0.e^{-\frac{t}{\tau}}\left(\frac{L}{R}.\frac{1}{\tau}-1\right)+I_0-\frac{E}{R}=0$$
 $\int_0^{\tau} \frac{L}{R}.\frac{I_0}{\tau}.e^{-\frac{t}{\tau}}+I_0-I_0.e^{-\frac{t}{\tau}}=\frac{E}{R}$

: مما أن t تتحقق هذه المعادلة مهما كانت المعادلة في حالة

$$\begin{cases} \frac{L}{R} \cdot \frac{1}{\tau} - 1 \\ I_0 - \frac{E}{R} \end{cases} \Longrightarrow \begin{cases} \tau = \frac{L}{R} \\ I_0 = \frac{E}{R} \end{cases}$$

 $I_0 = 0,1 A$: مبیانیا نجد

5-إيجاد قيمة R :

$$R = \frac{E}{I_0}$$
 : أي $I_0 = \frac{E}{R}$

$$R = \frac{5}{0.1} = 50 \,\Omega$$
 : ق.ع

L التحقق من قيمة

$$au = rac{L}{R} \quad \Rightarrow L = au.R$$
 : حسب تعبير ثابتة الزمن

$$L = 50 \ mH$$
 : أو $L = 1.10^{-3} \times 50 = 5.10^{-2} \ H$

: u_L التعبير العددي ل-6

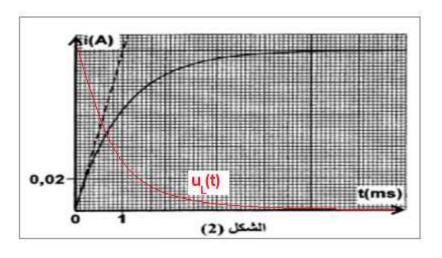
الطريقة الاولى :

$$E = u_L + u_R \implies u_L = E - Ri \implies u_L = E - R.I_0 \left(1 - e^{-t/\tau} \right)$$

$$u_L = E - R.\frac{E}{R} \left(1 - e^{-t/\tau} \right) \implies u_L = E - E + Ee^{-t/\tau}$$

$$u_L(t) = Ee^{-t/\tau} = 5e^{-10^3 t}$$

الطريقة الثانية :



$$u_{L} = L \frac{di}{dt} = L \frac{d}{dt} \left[I_{0} \left(1 - e^{-t/\tau} \right) \right] = L I_{0} \left(\frac{1}{\tau} e^{-t/\tau} \right)$$
$$u_{L}(t) = L \frac{E}{R} \frac{R}{L} e^{-t/\tau} \rightarrow u_{L}(t) = E e^{-t/\tau}$$

 $u_L(t)$ التمثيل المبياني ل

 $u_L(0) = E$: عند t = 0 عند

عندما $\omega_L(\infty)=0$ غان $t o\infty$ المقارب هو محور

الافاصيل .

الكيمياء:

1- معادلة تفاعل الحمض AH في الماء:

$$AH_{(aq)} \ \ \textbf{+} \quad \ H_2O_{(l)} \quad \rightleftarrows \quad \ \textit{$A^-_{(aq)}$} + \ \, H_3O^+_{(aq)}$$

جدول تقدم التفاعل:

المعادلة الكيميائية		$AH_{(aq)} +$	$H_2O_{(l)}$ \rightleftarrows	$A_{(aq)}^{-} + H_30$	+ (aq)
حالة المجموعة	التقدم	كميات المادة ب (mol)			
الحالة البدئية	0	C _a .V	وفير	0	0
حالة التحول	X	C_a . $V - x$	وفير	X	X
الحالة النهائية	Xéq	C_a . $V - x_{\acute{e}q}$	وفير	X _{éq}	Xéq

: حسب الجدول الوصفي $x_{
m eq}$ حسب الجدول الوصفي

$$oldsymbol{x}_{cute{e}oldsymbol{q}} = [oldsymbol{H}_3 oldsymbol{0}^+]_{cute{e}oldsymbol{q}}$$
 ومنه $[oldsymbol{H}_3 oldsymbol{0}^+]_{cute{e}oldsymbol{q}} = rac{x_{cute{e}oldsymbol{q}}}{v}$

: C و pH نسبة التقدم النهائي عند التوازن بدلالة au

$$\tau = \frac{x_{\text{\'e}q}}{x_{max}}$$

$$x_{\acute{e}q}=10^{-pH}.V$$
 فأن $[H_30^+]_{\acute{e}q}=10^{-pH}$ وبما أن $x_{\acute{e}q}=[H_30^+]_{\acute{e}q}.V$: لدينا

 $CV - x_{max} = 0 \iff AH$ هو المتفاعل المحد ومنه:

$$CV = x_{max}$$
 $au = rac{10^{-pH}}{C} \Leftarrow au = rac{10^{-pH}.V}{c.V} \Leftarrow au = rac{x_{eq}}{x_{max}}$: ولاينا $au = rac{10^{-3.41}}{10^{-2}} = 3,89.\, 10^{-2} pprox 3,9\%$

لهذا التحول Q_r لهذا التحول -4

$$Q_r = \frac{[A^-].[H_3O^+]}{[AH]}$$

 $Q_{r,ea}$ عند التوازن حج التفاعل عند التوازن -5

لدينا :

ت.ع :

$$Q_{r,\acute{e}q} = \frac{[A^-]_{\acute{e}q} [H_3 O^+]_{\acute{e}q}}{[AH]_{\acute{e}q}}$$

إذن:

$$[CH_3COO^-]_{\acute{e}q} = [H_3O^+]_{\acute{e}q} = \frac{\tau.C.V}{V} = \frac{\tau.x_{max}}{V}$$

$$[CH_3COOH]_{\acute{e}q} = \frac{C.V - x_f}{V} = \frac{C.V - \tau.C.V}{V} = \frac{x_{max}.(1 - \tau)}{V}$$
 : 9

$$Q_{r,éq} = \frac{\left(\frac{\tau \cdot x_{max}}{V}\right)^2}{\frac{x_{max} \cdot (1 - \tau)}{V}} \Rightarrow Q_{r,éq} = \frac{\tau^2 \cdot x_{max}}{V(1 - \tau)}$$

6- استنتاج قيمة ثابتة التوازن K

 $Q_{r,\acute{e}a}=K$: نعلم أن

: ما أن $CV = x_{max}$ فإت تعبير خارج التفاعل يصبح

$$K = \frac{\tau^2. C. V}{V(1-\tau)} = \frac{C. \tau^2}{1-\tau}$$

$$K = \frac{10^{-2} \times (3,89.10^{-2})^2}{1-3.89.10^{-2}} = 1,57.10^{-5}$$
 :ج.ت

7-حساب '**C**'

لدينا :

$$Q_{r,\acute{e}q} = \frac{[A^{-}]_{\acute{e}q}[H_{3}O^{+}]_{\acute{e}q}}{[AH]_{\acute{e}q}} = \frac{[H_{3}O^{+}]_{\acute{e}q}^{2}}{C' - [H_{3}O^{+}]_{\acute{e}q}} = \frac{10^{-2p'H}}{C' - 10^{-p'H}}$$

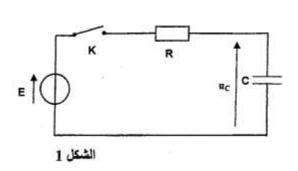
$$C' - 10^{-p'H} = \frac{10^{-2p'H}}{K} \Longrightarrow C' = \frac{10^{-2p'H}}{K} + 10^{-p'H}$$

ت.ع :

$$C' = \frac{10^{-2 \times 3}}{1,57.10^{-5}} + 10^{-3} = 6,47.10^{-2} \ mol.L^{-1}$$

"وَلَا تَسْتَوِي الْحَسَنَةُ وَلَا السَّيِّئَةُ ۚ ادْفَعُ بِالَّتِي هِيَ أَحْسَنُ فَإِذًا الَّذِي بَيْتَكَ وَبَيْتَهُ عَدَاوَةٌ كَأَنَّهُ وَلِيَّ حَبِيمٌ (34) " سورة فصلت

السنة الدراسية : 2016-2015	فرض محروس رقم 2 الدورة الأولى	ثانوية وادي الذهب أصيلة
المستوى: الثانية باك ع ف 3	مدة الإنجاز : ساعتان	مادة : الفيزياء و الكيمياء



فيزياء 1 (7نقط):

ا-الجزء الأول : شحن مكثف

ننجز التركيب التجريبي الممثل في الشكل (1) والمكون من مكثف سعته C ، غير مشحون بدئيا ، مركب على التوالي مع : موصل أومي مقاومته C

E = 12 V مولد قوته الكهرمحركة و قاطع التيار K .

نغلق الدارة عند اللحظة t=0 ونعاين ، باستعمال راسم تذبذب ذاكراتي تغيرات التوتر $u_c(t)$ بين مربطي المكثف بدلالة الزمن ، فنحصل على المنحنى الممثل في الشكل (2) .

(ن)). $u_{\mathcal{C}}(t)$ التوتر (1). $u_{\mathcal{C}}(t)$

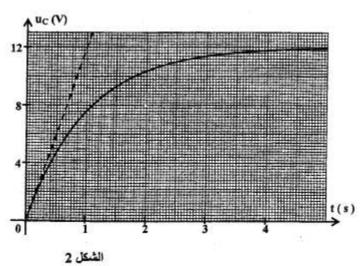
حل $u_{\mathcal{C}}(t)=E(1-e^{-rac{t}{ au}})$ حل -2 حقق من أن التعبيرau ثابتة الزمن .(1ن)

au و بين ، باعتماد معادلة الأبعاد ، أن لau بعدا زمنيا .(1ن)

 $C=100~\mu F$ هي ميانيا au واستنتج أن قيمة $C=100~\mu$

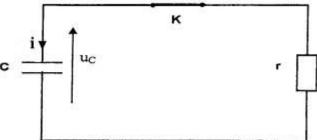
(ن) . $R=10~k\Omega$ نعطي

5-أحسب الطاقة المخزونة في المكثف في النظام الدائم .(1ن)



١١-الجزء الثاني : تفريغ المكثف

1-نفرغ المكثف عند اللحظة t=0 في موصل أومي مقاومة r أنظر الشكل (3) ، فيتغير التوتر بين مربطي الموصل الأومي وفق المعادلة :



الشكل 3

$$u_C = 360. e^{-\frac{t}{\tau'}}$$

 u_c حيث τ' ثابتة الزمن و u_c معبر عنها بالفولط τ' . أوجد قيمة t علما أن التوتر بين مربطي المكثف يأخذ القيمة u_c عند اللحظة $u_c(t)=132,45\,V$ عند اللحظة الموصل الأومي لضمان $u_c(t)=132,45\,V$ تفريغ أسرع للمكثف . $u_c(t)=132,45\,V$

فيزياء 2 (6نقط) :

لتحديد قيمة L معامل التحريض لوشيعة ننجز الدارة الممثلة في الشكل (1) والمكونة من مولد مؤمثل للتوتر قوته الكهرمحركة $E=5\,V$ ، وموصل أومي مقاومته R ، ووشيعة معامل تحريضها L ومقاومتها مهملة ، وقاطع التيار K .

نغلق قاطع التيار K عند اللحظة $t_0=0$. يمثل منحنى الشكل (2) تغيرات شدة التيار المار في الدارة .

1-ما دور الوشيعة عند غلق قاطع التيار في هذه الدارة ؟ (1ن)i(t) المار في الدارة.

المعادلة التفاضلية التي تحققها شدة التيار i(t) المار في الدارة i(t) -2-اثبت المعادلة التفاضلية التي تحققها شدة التيار (i(t)

(ان) . عین قیمتهاau جماذا تمثل

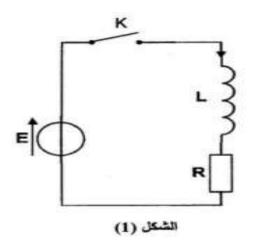
4-حل المعادلة التفاضلية يكتب:

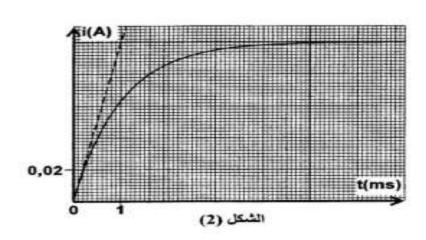
. I_0 من I_0 و I_0 . أعط تعبير كل من I_0 و I_0 . حدد قيمة I_0 مبيانيا. (ان)

(ان) . $L = 50 \ mH$ و تحقق من أن R و تحقق من أن

6-أوجد التعبير العددي للتوتر u_L بين مربطي الوشيعة بدلالة الزمن . مثل على الشكل (2)

(ن1) . $u_L(t)$ المنحنى الممثل لتغيرات التوتر





كىمىاء (7نقط):

يهدف هذا التمرين الى دراسة حمض البوتانويك مع الماء

. A^- صيغة حمض البوتانويك هي C_3H_7COOH لتبسيط نرمز له ب A^+ و قاعدته المرافقة ب

L=100~m وحجمه $C=10^{-2}~mol.~L^{-1}$ نحضر محلولا مائيا (S) لحمض البوتانويك تركيزه

. pH = 3,41 فنجد pH المحلول (S) نقيس

1-أكتب معادلة التفاعل بين حمض البوتانويك AH و الماء . ثم انشئ الجدول الوصفي للتحول الكيميائي .(1ن)

(نر).(ن)) عند التوازن بدلالة v و $H_3 O^+$ (الله تعبير تقدم التفاعل x_{eq} عند التوازن بدلالة V و $H_3 O^+$

(ن) عند النهائي عند التوازن بدلالة pH و p ، ثم احسب قيمتها . ماذا تستنتجau

(ن1) . لهذا التحول Q_r لهذا التحول +

 $Q_{r, ext{eq}}=rac{x_{max}\cdot au^2}{V.(1- au)}$: جبين أن تعبير Q_r خارج التفاعل عند التوازن يكتب على الشكل التالي Q_r

حيث x_{max} التقدم الأقصى . (1ن)

(ان) المقروس. التفاعل المدروس. (1ن) المقرونة بمعادلة التفاعل المدروس. (1

(ن) . C' أحسب pH'=3,00 و له C' و له البوتانويك تركيزه C' أحسب (S')

بالتوفيق

" ومن لم يذق مر التعلم ساعة ، تجرع ذل الجهل طول حياته "