1 2 **|

الامتحان الوطني الموحد للبكالوريا

المسالك الحولية الدورة العادية 2021 - عناصر الإجابة –

فيبلك البارية وزارة التربية الرامنية والتكوين البمنس التعلم العالم والبحث العاس الم كن الحاش العاس

المركز الوطني للتقويم والامتحانات

4h	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)	الشعبة أو المسلك

Exercise 1			Elements of solutions	
		a)	- We show that : $\lim_{x\to+\infty} (f_n(x)-nx+2)=0$	0.25
			- The line with the equation $y = nx - 2$ is an asymptote	
	1-		to (C_n) at $+\infty$.	0.25
	1-	b)	We show that the line (Δ_n) : $y = nx$ is an asymptote to	0.5
			(C_n) at $-\infty$	
			Mark 0 is assigned to incomplete answer	
		a)	- Show that f_n is differentiable on \mathbb{R}	0.25
			- Justify the expression of $f'_n(x)$	0.25
	2-	b)	Show the inequality	0.5
Part I	22	c)	f_0 is strictly decreasing on $\mathbb R$	0.5
			And $(\forall n \geq 1)$, f_n is strictly increasing on \mathbb{R}	
			Marks 0 is assigned to incomplete answer	
		a)	Determination of the quation of the tangent.	0.5
	3-	b)	The proof that $I(0,-1)$ is the unique inflexion point of	0.5
			(C_n)	
	4-		Graphical representation of (C_0)	0.25
			Graphical representation of (C_2)	0.25
		a)	Calculate the integrale.	0.5
	5-	b)	Justify the calculation of $\lim_{t \to +\infty} A(t)$	0.5
		a)	Justify the existence and the uniqueness of α	0.5
	1-		Mark 0 is assigned to incomplete answer	
Dowl II		b)	Show the inequality	0.5
Part II		a)	Show the inequality	0.5
	2-	b)	Show the inequality	0.5
		c)	Show the convergence of the sequence $lpha$	0.5
Part III	1-	a)	Justify the existence and the uniqueness of x_n	0.5

NR 24E			تحان الوطني الموحد للبكالوريا - الدورة العادية 2021 – عناصر الإ - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية	731
		b)	Justify the two inequalities	0.5
		a)	Show the inequality	0.5
	2-	b)	Show that the sequence is strictly decreasing	0.5
		c)	Justify that the sequence $(x_n)_{n\geq 2}$ is convergente	0.5
		a)	Justify the two inqualities	0.5
	3-	b)	Calculate $\lim_{n\to+\infty} x_n$	0.25
			Justify that: $\lim_{n \to +\infty} nx_n = 1$	0.25
	4	a)	Show the inequality	0.5
	4-	b)	The deduction of the limite	0.5

Exercise 2		Elements of solutions	Marks	
1-	a)	olving the quation	0.5	
		All solutions are accepted		
	b)	The write of the two solutions in exponential form.	0.25x2	
2-	a)	Proof of the two inequalities	0.5x2	
	b)	Calculating the ratio	0.5	
	c)	Determination of the nature of the triangle <i>PQD</i>	0.5	
3-	a)	Proof of the inequality	0.5	
	b)	Proof of the cocyclic points.	0.5	

Exercise 3			Elements of solutions	Marks
Part I 1-			Verification	0.25
	2-		Solving the equation (E) with justification of all steps Mark 0 is assigned to incomplete answer	0.75
Part II			-Justify that b x and 43 are coprimesont	0.25
		a)	- Justify the congruence	0.25
	1-		- Justify the congruence	0.25
		b)	- Justify the congruence	0.25
	2-		Give the set of the solutions of the equation (F)	0.5
Part III		a)	-Justify that $x \equiv 11$ [43]	0.25
	1-	-		0.23
		b)	Justify the congruence	0.5
	2		Give the set of the solutions of the system (S)	0.5
	2-		Mark 0 is assinged to incomplete answer	

- The duration of the exam is four hours
- -The exam consists of 3 independent exercises
- The exercises can be treated in the order chosen by the candidate
 - Exercise1 concerns analysis(12 pts)
 - Exercise2 concerns complex numbers.....(4 pts)
 - Exercise3 concerns arithmetic(4 pts)

The use of the calculator is not allowed

The use of red color is not permitted

EXERCISE1: (12 points)

For every natural number n we consider the function f_n defined on \mathbb{R} by :

$$f_n(x) = \frac{-2e^x}{1+e^x} + nx$$

And let (C_n) be its representetive curve in an orthonormal coordinate system (O, \vec{i}, \vec{j}) .

(We will take
$$\|\vec{i}\| = \|\vec{j}\| = 1cm$$
)

Part I:

NS 24E

- 0.5 1-a) Calculate $\lim_{x\to +\infty} (f_n(x) nx + 2)$, then interpret graphically the obtained result.
- b) Show that the curve (C_n) admits, at $-\infty$, an asymptote (Δ_n) for which you will determine a cartesian equation.
- 0.5 2-a) Show that the function f_n is differentiable on \mathbb{R} and that:

$$(\forall x \in \mathbb{R})$$
; $f'_n(x) = \frac{-2e^x}{(1+e^x)^2} + n$

- 0.5 b) Show that : $(\forall x \in \mathbb{R})$; $\frac{4e^x}{(1+e^x)^2} \le 1$
- 0.5 c) Deduce the sense of variation of the function f_n on \mathbb{R} (We distinguish the two cases : n=0 and $n \ge 1$)
- 0.5 3-a) Determine the equation of the tangent to (C_n) at the point I with abscissa 0
- b) Show that the point I is the unique inflection point of the curve (C_n)
- 0.5 4- Plot in the same coordinate system, the curves (C_0) and (C_2) .
 - 5- For all real number t>0, A(t) denotes the area of the region delimited by the curve (C_n) and the lines with equations: y=nx-2, x=0 and x=t
- 0.5 a) Calculate A(t) for every t > 0
- 0.5 b) Calculate $\lim_{t\to +\infty} A(t)$

Part II:

Consider the numerical sequence $(u_n)_{n>0}$ defined by:

$$u_0 = 0$$
 and $(\forall n \in \mathbb{N})$; $u_{n+1} = f_0(u_n)$

- 0.5 1-a) Show that the equation $f_0(x) = x$ admits a unique solution α in \mathbb{R}
- 0.5 b) Show that : $(\forall x \in \mathbb{R})$; $|f_0'(x)| \le \frac{1}{2}$
- 0.5 2-a) Show that: $(\forall n \in \mathbb{N})$; $|u_{n+1} \alpha| \le \frac{1}{2} |u_n \alpha|$

	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 – الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)				
0.5	b) Deduce that : $(\forall n \in \mathbb{N})$; $ u_n - \alpha \le \left(\frac{1}{2}\right)^n \alpha $				
0.5	c) Show that the sequence $(u_n)_{n\geq 0}$ converges to α .				
	Part III:				
	Suppose in this part that $n \ge 2$				
0.5	1- a) Show that for all natural number $n \ge 2$, there exists a unique real number x_n				
	which is a solution of the equation $f_n(x) = 0$				
0.5	b) Show that for all natural number $n \ge 2$, $0 < x_n < 1$				
	(we will take $\frac{2e}{1+e} < 1.47$)				
0.5	2-a) Show that for all natural number $n \ge 2$, $f_{n+1}(x_n) > 0$				
0.5	b) Deduce that the sequence $(x_n)_{n\geq 2}$ is strictly decreasing.				
0.5	c) Show that the sequence $(x_n)_{n\geq 2}$ is convergent.				
0.5	3-a) Sow that for all natural number $n \ge 2$, $\frac{1}{n} < x_n < \frac{1}{n} \left(\frac{2e}{1+e} \right)$				
0.5	b) Deduce $\lim_{n\to +\infty} x_n$ then show that : $\lim_{n\to +\infty} nx_n = 1$				
0.5	4-a) Show that for all natural number $n \ge 2$, we have $x_n \le x_2$				
0.5	b) Deduce $\lim_{n\to+\infty} (x_n)^n$				
	EXERCISE2: (4 points)				

1-a) Solve in
$$\mathbb{C}$$
 the equation with variable $z(E): z^2 - (a+b+c)z + c(a+b) = 0$

b) We suppose in this question that : a = i, $b = e^{i\frac{\pi}{3}}$ and c = a - bWrite the solutions of the equation (E) in exponential form.

2- The complex plane is attached to a direct orthonormal coordinate system (O, \vec{u}, \vec{v}) . Consider the three points A(a), B(b) and C(c) assumed non-collinear.

Let P(p) be the center of the rotation with angle $\frac{\pi}{2}$ which sends B to A

And Q(q) be the center of the rotation with angle $\left(-\frac{\pi}{2}\right)$ which sends C to A

And D(d) be the midpoint of the segment [BC]

0.5

0.5

الصفحة 4 4	NS 24E	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2021 – الموضوع - مادة: الرياضيات- شعبة العلوم الرياضية (أ) و (ب) (خيار إنجليزية)						
1	a) Sh	a) Show that : $2p = b + a + (a - b)i$ and $2q = c + a + (c - a)i$						
0.5	b) Calculate: $\frac{p-d}{q-d}$							
0.5		c) Deduce the nature of the triangle <i>PDQ</i>						
		- Let E be the symmetric point of B with respect to P , and F be the symmetric point of C with respect to Q and K be the midpoint of the segment $[EF]$.						
0.5	a) Sh	a) Show that the affix of K is $k = a + \frac{i}{2}(c - b)$						
0.5	b) Sh	now that the points K , P , Q and D are cocyclic.						
	EXERCISE3: (4 points)							
	Part I	rt I : Consider in $\mathbb{Z} \times \mathbb{Z}$ the equation (E) : $47x - 43y = 1$						
0.25	1- Veri	fy that the couple $(11,12)$ is a particular solution of the equation (E)						
0.75	2- Solv	olve in $\mathbb{Z} \times \mathbb{Z}$ the equation (E)						
	Part II	$t \mathbf{H} : \text{Consider in } \mathbb{Z} \text{ the equation } (F) : x^{41} \equiv 4 [43]$						
	1- Let :	- Let x be a solution of the equation (F)						
0.5	a) Sh	a) Show that x and 43 are coprime, then deduce that : $x^{42} \equiv 1$ [43]						
0.5		ow that : $4x \equiv 1$ [43], then deduce that : $x \equiv 11$ [43]						
0.5		the set of the solutions in \mathbb{Z} of the equation (F)						
	Part III : Consider in \mathbb{Z} the system with two equations (S) : $\begin{cases} x^{41} \equiv 4 & [43] \\ x^{47} \equiv 10 & [47] \end{cases}$							
	1- Let :	Let x be a solution of the system (S)						
0.5	a) Show that x is a solution of the system (S') : $\begin{cases} x = 11 & [43] \\ x = 10 & [47] \end{cases}$							
0.5	b) D	b) Deduce that : $x = 527$ [2021] (One can use Part I)						

END

2- Give the set of the solutions in \mathbb{Z} of the system (S)

0.5