ا <u>صفحة</u> 1 4	<u>11</u>		الامتحان الوطني الموحد للبكالور المسالك الدولية ـ خيار أنجليزية الدورة الاستدراكية 2017 - عناصر الإجابة - RR 30E	+•XHAI I HEYOZO +•E=LI=0+ I SOXEI ==I=ESO A SOES++X •XX8H=I A SOOHEA =I=LHH= A SOXXES =E=00=I	المباكة المغرية وزارق التربية الولمنية والتكوين المعني والتعليم العالمر والبحث العلمي المركز الوطني للة
4	از	مدة الإنج	لفيزياء والكيمياء	Ν	المادة
7	المعامل 7		رياضية (أ) و (ب) - خيار انجليزية	الشعبة أو المسلك	
Chemistry(7 points)					

Chemistry(7 points)					
Questions	Answers	Marking	Question reference in the framework		
		scale Bart I			
		Part I			
1-1-1-	$CH_3-CH_2-C-O-CH_2-CH_3$ \parallel O ethyl propanoate	0,25 0,25	 -Recognise in the formula of a chemical compound the organic functional groups: -OH(hydroxyl); - CO2H(carboxyl) ; -CO2R (ester); -CO-O-CO- (anhydride). -Write the esterification and the hydrolysis equation. -Name the esters containing at most five carbon atoms. 		
1-1-2-	Method, $m \approx 2,47 g$.	0,5 0,25	 -Know that, the reaction quotient in equilibrium Qr,eq, associated to the reaction equation of a chemical system, takes a value independent of concentrations, called equilibrium constant K. -Draw the progress table of a reaction and exploit it. -Determine the composition of reaction mixture at a given time. 		
1-2-1-	Equation of the reaction	0,25	-Write the esterification and the hydrolysis equation.		
1-2-2-	Method, $r \simeq 91\%$.	0,25 0,25	-Calculate the yield of a chemical transformation.		
2-1-1-	Equation of the reaction	0,25	-Write the equation of the acid-base reaction and identify th two pairs involved.		
2-1-2-	$pH = pK_{A} + log\left(\frac{\left[C_{2}H_{5}COO_{(aq)}^{-}\right]}{\left[C_{2}H_{5}COOH_{(aq)}\right]}\right)$	0,25	-Write and use the expression of the acid dissociation constant KA associated with the reaction of an acid with water.		
2-1-3-	Finding the expression	0,75	-Determine the pH for an aqueous solution.		
	τ≃1%.	0,25	-Calculate the final progress of the reaction that occurs between an acid and water taking into consideration the value of both the concentration and this acid's pH aqueous solution; then, compare it with the maximum progress. -Define the final progress rate of a reaction, and determine i using experimental data		
2-2-1-	equation of titration reaction (use only one arrow).	0,25	-Write the equation of titration reaction (use only one arrow		
2-2-2-	Method,	0,25	-Draw the progress table of a reaction and exploit it. -Write and use the expression of the acid dissociation		
	$\frac{\left[C_{2}H_{5}COO^{-}\right]}{\left[C_{2}H_{5}COOH\right]} = \frac{V_{B}}{V_{BE} - V_{B}}$	0,25	constant KA associated with the reaction of an acid with water -Determine and exploit the point of equivalence.		
2-2-3-	Check the value of pK_A	0,5	1		

الصفحة 2 RR30E الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2017 – عناصر الإجابة – مادة: الفيزياء والكيمياء – شعبة العلوم الرياضية (أ) و (ب) – خيار أنجليزية

		Part II	
1-	b	0,5	 -Interpret the functioning of a battery based on: the direction of electric current flow, the electromotive force (emf), the electrode reactions, the polarity of electrodes or the movement of charge carriers. -Determine the direction of spontaneous evolution of a chemical system. -Write the half-equation that occurred in each electrode (use double arrows) and write the overall equation of the reaction during the battery functioning (use one arrow).
2-1-	Method, $Q_r = \frac{1,25.10^{-2}+0,25x}{(0,1-2x)^2}$	0,25 0,25	-Give and use the expression of the reaction quotient Qr through the reaction equation.-Establish the relationship between the amount of substance of chemical specie produced or consumed, the
2-2-	Method, $Q_r = 56, 25$.	0,5 0,25	current intensity and the operating duration of a battery. Use this relationship to determine other quantities (quantity of charge, progress of the reaction, change of
2-3-	Method, $ \Delta m = 5,62 \mathrm{g}$	0,25+0,25	the mass).

	Physics (13 points)						
Exercise1	Questions	Answers	Marking	Question reference in the			
2,25 points)	1-	c	scale 0,5	framework-Use the dimensional analysis to determine the units of λ and τ Know that 1Bq is equal to one decay per second. -Use different units of mass, energy and the relationships between their units. 			
tions (2-	The definition	0,25	Define the radioactivity: α , $\beta^+ \& \beta^-$ and the $\gamma - radiation$.			
Nuclear Transformations (2,25 points)	3-	Method, $ \Delta E \approx 2,28 \mathrm{MeV}$.	0,5 0,25	-Define and calculate the mass defect and the binding energy. - Define and calculate the binding energy per nucleon and exploit it. -Calculate the energy released (produced) by a nuclear reaction: $E_{pro} = \Delta E $.			
Nucle	4-	Method , $t_1 \approx 10,63$ ans .	0,5 0,25	-Know and exploit the law of the radioactive decay, and exploit its curve.			

الصفحة 3 RR30E الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2017 – عناصر الإجابة – مادة: الفيزياء والكيمياء – شعبة العلوم الرياضية (أ) و (ب) – خيار أنجليزية

Ex2	2 Questions Answers				Marking	Question reference in the		
					scale framework Part I			
	1-1-	differential equation			0,5	- Find out the differential equation and verify its solution when the RC dipole is submitted		
	1-2-	Method , $R = 400 \Omega$.			0,25 0,25	to a step voltage -Know and exploit the time-constant expression. -Exploit experimental documents in order		
	1.2	Mathad			0.25	to: -Recognise and represent the variation		
	1-3-	Method, $U_0 = 4 V$			0,25 0,25	curves of $u_{\rm C}(t)$ between the capacitor terminals and different physical quantities associated to it, and exploit them. -Recognise that the voltage between capacitor terminals is a continuous function of time at t=0, and the current intensity is a		
	1-4-	$E_{el} = \frac{1}{2}C(E^2 - U_0^2), E_{el} = 60\mu J$			0,25+0,25	 discontinuous function at t=0. -Know and exploit the expression of the electric energy stored in a capacitor. 		
ts)	2-1-	Establish this relationship :			0,5	-find out the expression of the electro- magnetic energy stored in an inductor.		
Electricity (5,25 points)	2-2-	$E_{m} = \frac{1}{2}Li^{2}(t).$ Method , $\frac{dE_{t}(t)}{dt} = -(R_{0} + r).i^{2}(t).$			0,25	-Know and exploit the voltage expression $u=r.i+L.\frac{di}{dt}$ between the inductor (coil)		
ctricity					0,25	terminals using the receiver convention. -Find out the differential equation for the voltage between the capacitor terminals or		
Ele	2-3-	Finding $ \Delta E = \frac{1}{2} (CE^2 - \left(\frac{u_{R_0}}{R_0}\right)^2 (L + C(R_0 + r)^2))$			0,25	for its charge $q(t)$ in the damping case. -Know and exploit the expression of the tota energy in the circuit.		
		$ \Delta E \approx 2,58.10^{-5} \mathrm{J}$			0,25			
	Part II							
	1- d		0,5	-Know the role of the driver and the resonating system. -Know and exploit the quality factor expression $Q = \frac{N_{\circ}}{\Delta N}$ - Know the power factor -Distinguish between free and forced oscillations.				
	2- F	Finding: * $U_m \approx 10V$, * $L_0 \approx 0.5H$, * $r_0 = 7\Omega$	0,25 0,25 0,25	-Kn -Red	-Know and exploit the impedance expression $Z=\frac{U}{I}$ of a circuit. -Recognise the electric resonance phenomenon and its characteristic -Know and exploit the natural period expression.			
		Aethod. 0,25 -Fi P=1,35W. P		-Fin P=	-Find out and exploit the average power expression $P = U.I.\cos \phi$			
			0,25	-Red	cognise the electric	resonance phenomenon and its characteristics.		

الصفحة 4 RR30E الامتحان الوطني الموحد للبكالوريا – الدورة الاستدراكية 2017 – عناصر الإجابة – مادة: الفيزياء والكيمياء – شعبة العلوم الرياضية (أ) و (ب) – خيار أنجليزية

Exercise3		Questions	Answers	Marking	Question reference in the
				scale	framework
		1-1-	differential equation	0,25	-Apply Newton's second law to the oscillating system (solid-spring) to establish the differential equation of motion and verify its solution when the oscillating system vibrates in the following situations: horizontal, inclined or vertical
		1-2-	Finding: $X_m = 2 \text{ cm}$,	0,5 0,25	-Know the meaning of the physical quantities involved in the expression of the parametric
			$\phi = 0$.	0,25	equation $x_{G}(t)$ of the oscillating system (solid-
					spring) and determine them using the initial conditions.
					-Exploit the curves: $x_G^{}(t)$, $v_G^{}(t)$ and $a_G^{}(t)$.
	Part I	2-1-	$\Delta \ell_0 = -\frac{mg}{K}.$ Finding :	0,25	-Know the characteristics of the restoring force exerted by a spring on a solid in motion
	I	2-2-		0,5	-Know and exploit the expression of the elastic potential energy.
			$E_{p} = \frac{1}{2}Kz^{2} + \frac{1}{2}K(\Delta \ell_{0})^{2}$		
		2-3-1-	Finding: $\Delta \ell_0 = -4 \mathrm{cm}$,	0,25	-Exploit the energy diagrams.
-			$K = 50 \text{ N.m}^{-1}$.	0,25	
nts		2-3-2-	Finding:		-Know and exploit the relation between the work
i poiı			$\vec{W(T)} = -\Delta E_p + K \Delta \ell_0 (z_2 - z_1)$	0,25	of a force applied by a spring and the elastic potential energy change.
(5,5			$W(\vec{T}) = -3, 3.10^{-2} J.$	0,25	
anics		1-	The definition	0,25	-Know the heliocentric and geocentric frames of reference.
Mechanics (5,5 points)	Part II	2-	The correct answer is "d"	0,5	 -Use of the dimensional analysis (dimensional equations). -Know that the gravitational force applied on the centre of mass of a satellite or of a planet is centripetal. -Apply the Newton's second law to the centre of mass of a satellite or of a planet to determine the type of motion or one of parameters that characterizes the motion.
		3-	$\vec{F} = G \frac{m.M}{R^2} \vec{n}$	0,25	-Know the universal gravitation law in its vectorial form.
		4-	Show that the motion is circular uniform.	0,5	-Apply the Newton's second law to the centre of mass of a satellite or of a planet to determine the type of motion or one of parameters that characterizes the motion.
		5-	Finding: $\frac{T^2}{R^3} = \frac{4\pi^2}{GM} = cte$	0,5	-Find Kepler's third law in the case of circular trajectory.
		6-	Finding: $\frac{T^2}{R^3} = \frac{4\pi^2}{GM} = cte$ Finding: $r = R \cdot \sqrt[3]{\frac{m \cdot T'^2}{M \cdot T^2}}$,	0,5	
			$r \approx 3,81.10^5 \text{ km}$	0,25	