الصفحة 1 8	ر پا	الامتحان الوطني الموحد للبكالم المسالك الدولية — خيار أنجليزية	منية 🔥 🚺 کې ۵۱۰۵:۱۰ +۰۵۰۵ +۰۵۰ +۰۵۰	المبلكة المغربية وزارق التربية الوكه والتحوين الممنم والتعليم العالمر والبحث
*		NS30E الدورة العادية 2018 -الموضوع-	الوطني للتقويم والإمتحانات. والتوجيه	المركز
4	مدة الإنجاز	الفيزياء والكيمياء		المادة
7	المعامل	ب الشعبة أو المسلك المعبة العلوم الرياضية : " أ" و " ب" – خيار أنجليزية المعام		

The use of the non-programmable scientific calculator is allowed

This exam paper consists of four exercises; one in Chemistry and three in Physics.

<u>Chemistry (7points)</u>

- The chemical reactions of water with an acid and with an ester,
- The electrolysis of water.

Physics (13 points)

* Exercise 1: Nuclear Transformations (3,25 points)

- The α decay of the radium,
- The motion of the α -particle in a uniform magnetic field.

***** <u>Exercise 2 : Electricity (5 points)</u>

- Response of the RC circuit to a step of voltage,
- Response of the RL circuit to a step of voltage,
- Forced oscillations in RLC series circuit.

* Exercise 3: Mechanics (4,75 points)

- The motion of an object in the air and in a liquid,
- The motion of an elastic pendulum.

Chemistry (7 points)

Water is chemical specie which plays an important role in chemistry of aqueous solutions. We will study in this exercise:

- An aqueous solution of an acid;
- Hydrolysis of an ester;
- Electrolysis of water.

1-Study of an aqueous solution of an acid HA:

We prepare an aqueous solution S_A of 2-methylpropanoic acid, denoted HA, of volume V and molar concentration $C=10^{-2}$ mol.L⁻¹. We denote by A⁻ the conjugate base of HA.

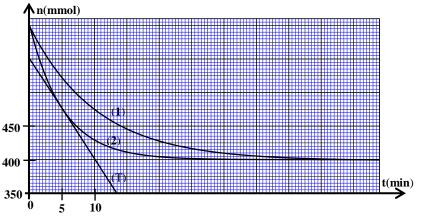
The measurement of pH of the solution S_A gives the value pH=3.44.

- 0,25 **1-1-**Write the chemical equation of the reaction between the acid HA and water.
- 0,75 **1-2-** Calculate the final progress rate of the reaction, and deduce which chemical specie is predominant of the pair $HA_{(aq)}/A^{-}_{(aq)}$.
- 0,75 **1-3-** Find out the expression of the constant pK_A of the pair $HA_{(aq)}/A_{(aq)}^-$ in terms of C and pH. Check that $pK_A \approx 4.86$.

1-4-We take a volume $V_A = 20 \text{ mL}$ of the aqueous solution S_A to which we add progressively a volume

 V_B of an aqueous solution (S_B) of sodium hydroxide Na⁺_(aq) + HO⁻_(aq) of molar concentration C_B = C where V_B < 20 mL.

- 0,5 **1-4-1-** Write the chemical equation of the occurring reaction (the reaction is considered complete).
- 0,5 **1-4-2** Find out the value of the volume V_B of the aqueous solution (S_B) added at the moment when pH of the reaction mixture is pH=5.50.


2- Hydrolysis of an ester:

The ester ethyl 2-methylpropanoate, whose structural formula is $CH_3 - CH - C - O - CH_2 - CH_3$, is characterized by strawberry flavour.

The hydrolysis of this ester, denoted E, produces an acid and an alcohol. We perform two equimolar mixtures of the ester E and water. The volume of each mixture is V_0 . The curves (1) and (2), shown in figure on the right, represent the

figure on the right, represent the evolution of the amount of the ester E during the time at constant temperature θ .

0,5

One of the two curves is obtained when the catalyst is not used during the hydrolysis reaction. **2-1-** Using a structural formulae, write the equation of the occurring reaction.

0,75 **2-2-** Determine graphically the half-life of the chemical reaction corresponding to curve (1).

المرفحة							
3	الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2018 – الموضوع – الموضوع – NS30E – الموضوع – ماحة: الفيزياء والكيمياء – هتعبة العلوم العلوم الرياضية "أ" و"بم"– حيار أيجليزية						
8	المعريرينية الميرك المعرف المعلوم العلوم العرفي الرياضية المحمد العربي المعلوم الرياضية المعلوم ال						
0,5	2-3- Indicate, justifying your answer, the curve which corresponds to the hydrolysis reaction performed without the use of the catalyst.						
0,75	2-4- Using the curve (2), determine the volumetric rate of the reaction expressed in mol.L ⁻¹ .min ⁻¹ , at the instant of time $t_1 = 5 \min((T))$ represents the tangent of the curve (2) at the instant t_1). We take the volume of the mixture $V_0 = 71$ mL.						
	1- Electrolysis of water:						
	We introduce a volume of acidified water in an electrolysis cell. We put on the top of each graphite electrode a test tube, filled in water, used to recover the generated gases, and then we set up the mounting shown in figure below.						
	After the switch is closed, at an instant of time assumed as origin of time (t=0), we adjust the electric current to the value I=0,2A.						
	Given: K K A						
	-The Ox / Red pairs involved in the electrolysis reaction are: $O_{2(g)}/H_2O_{(\ell)}$ and $H_{(aq)}^+/H_{2(g)}$;						
	-The molar volume at the experimental conditions is : Acidified water $V_m = 24 \text{ L.mol}^{-1}$;						
	- $N_A = 6,02.10^{23} \text{ mol}^{-1}$; $e = 1, 6.10^{-19} \text{ C}$.						
0,5	3-1- How many statements are true, from the following?						
	 a- The electrode linked to the positive terminal of the power supply is the anode; b- The forced transformation is a reaction which occurs in the opposite direction of a spontaneous transformation. c- During the functioning of the electrolysis cell, the reduction reaction is produced at the anode; d- The electric current emerges from the cathode of an electrolysis cell. 						
0,5	3-2- Write the chemical equation at the anode.						
0,75	3-3- Find out the expression of the volume of the dioxygen gas generated at an instant t, in terms of I, V_m , N_A , e and t. Calculate its value at the instant t=8min.						
	<u>Physics (13 points)</u>						
	Exercise 1: Nuclear transformations (3,25 points)						
	We aim in this exercise at studying the α – decay of radium and the motion of α -particle in a uniform magnetic field.						
	1- In 1898, Marie and Pierre Curie announced the discovery of the two radioactive elements: the polonium and the radium. The radium ${}^{226}_{88}$ Ra which decays to radon ${}^{222}_{86}$ Rn, is considered as an historical						
	example of the α – decay. The radium was chosen as a reference for calculating the activity of						

example of the α – decay . The radium was chosen as a reference for calculating the activity of radioactive samples. The activity was expressed in Curie (1Ci) for years, before using the becquerel as a unit.

الصفحة	الامتحان الوطني الموحد للبكالوريا – الدورة التعادية 2018 – الموضوع NS30E						
8	– ماحة: الغيرياء والكيمياء – شعبة العلوم الرياضية "أ" و"بم" – ديار أدبليرية						
	The Curie (1Ci) is the activity of a sample of one gram (1g) of radium 226.						
	Given: - Molar mass of radium: $M = 226 \text{ g.mol}^{-1}$; Avogadro constant : $N_A = 6,02.10^{23} \text{ mol}^{-1}$;						
	- The binding energy of the radium nucleus: $E_{\ell}({}^{226}_{88}Ra)=1,7311.10^3 \text{ MeV};$						
	- The binding energy of the radon nucleus : $E_{\ell} (\frac{222}{86} Rn) = 1,7074.10^3 MeV$;						
	- The binding energy of the helium nucleus: $E_{\ell}({}^{4}_{86}He)=28,4 \text{ MeV}$;						
	- Decay constant of the radium: $\lambda = 1, 4.10^{-11} \text{ s}^{-1}$; 1year= 365,25 days;						
0,25	- Decay constant of the radium: $\lambda = 1,4.10$ s ; Tyear = 365,25 days; 1-1- Define the binding energy of a nucleus.						
0,5	 1-2- Choose, from the following statements, the one which is true a- The radium and the radon are isotopes; b- The radon nucleus consisting of 88 neutrons and 138 protons. c- In a time equals 3t_{1/2} (t_{1/2} is the half-life of the radium), the number of the radium nuclei equals 12.5% of its value at t = 0. d- The relation between the half-life and the decay constant is : t_{1/2} = λ.ln 2. 						
0,5	1-3- Show that: $1 \text{Ci} \approx 3,73.10^{10} \text{ Bq}$.						
0,5	1-4- What would be in June 2018 the activity, in Bq unit, of 1g of radium's sample, knowing that its activity in June 1898 was 1Ci.						
0,5	1-5- Calculate in MeV, the energy released (produced) by a decay of radium nucleus.						
	2- The α -particle produced passes through the gap O with the velocity $\overrightarrow{V_0}$ of horizontal direction, and penetrates in the region of the uniform magnetic field, of magnitude $B=1,5T$, which is perpendicular to the vertical plan (π). This particle is deflected and hits the screen at the point M (see figure on the right).						
	The weight of the α -particle, of charge q=+2e, is negligible about the Lorentz force acting on it. \vec{B}						
0,5	2-1- By applying Newton's second law, determine the nature of the motion of the α -particle in the uniform magnetic field \vec{B} .						
0,5	2-2- Express the distance OM in terms of $m(\alpha)$, e, B, and V_0 . Calculate its value. We give: - Mass of the α -particle: $m(\alpha)=6,6447.10^{-27}$ kg; - $V_0=1,5.10^7$ m.s ⁻¹ ; $e=1,6.10^{-19}$ C.						
	Exercise 2: Electricity (5 points)						
	The aim of this exercise is studying:						
	 The response of the RC circuit to a step of voltage, The response of the RL circuit to a step of voltage, The current electric resonance phenomenon in RLC circuit. 						

الصفحة		كالوريا – الدورة العادية 2018 – الموضوع	الاعتدان الملدي المعدد الك	
5/8	NS30E	NS3UE ماحة: الغيزياء والكيمياء — هعرة العلوم العلوم الرياخية "أ" و"بم"— حيار أنجليزية		
0				
	I- Respon	se of the RC circuit to a step of voltage.		
	We set up of:	the mounting shown in figure 1 which consists	R	
		supply G of voltage, its electromotive force is E	;	
	- a resistor	of resistance $R = 2k\Omega$;	$G() _{E} \qquad \uparrow i$	
	- a capacito - switch K	or of capacitance C, without initial charge;		
	At the inst	ant t=0 the switch K is closed. We denote u_c the	ne K	
	-	tween the terminals of the capacitor.	Figure 1	
		shown in figure 2 represents the variations of	$\bigwedge \frac{\mathrm{du}_{\mathrm{C}}}{\mathrm{d}_{\mathrm{C}}} (\mathrm{V.s}^{-1})$	
	$\frac{du_C}{dt}$ as a function	unction of $u_{\rm C}$.		
0,25		t the differential equation for the voltage	5.104	
	u _c .		5.10	
0,5	2- Determin	he the value of E and verify that $C=10 nF$.		
0,25	3- We defin	e the energetical yield of the charging		
	process of th	he capacitor by the expression $\rho = \frac{E_e}{E_{\sigma}}$ where	u _c (V)	
	E_e is the en	ergy stored in the capacitor at the steady	Figure 2	
	state, and E	$_{g} = C.E^{2}$ is the energy delivered by the power		
	supply G.		$K \stackrel{\bullet}{\swarrow} R_2$	
	Determine	the value of ρ .	$\begin{array}{c} \mathbf{K} \\ \mathbf{b} \\ \mathbf{c} \\ $	
	II-Respor	nse of the RL circuit to a step of voltage		
	We set up	the mounting shown in figure 3. It consists of:	$\mathbf{E} \left[\bigcup_{i=1}^{K_1} \bigcup_{j=1}^{K_1} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{j=1}^{K_2} \bigcup_{i=1}^{K_2} \bigcup_{i=1$	
	- a power	supply of voltage of e.m.f $E=6V$.		
	- two resist	tors of resistance R_1 and $R_2 = 2k\Omega$;	Figure 3	
		or (b) of inductance L and of resistance $r=20$	0Ω;	
	- a switch			
	- an ideal c	liode D of knee of voltage (threshold) $u_s = 0$.	∧ ^{i(mA}	
	1- At an in	stant t=0, the switch K is closed. An		
	appropriate	e datalogger gives the curve which represents		
	the evoluti	on of electric current i(t) flowing in the		
		ure 4). The line (T) is the tangent of the curve		
	at the insta	nt t=0.	20-1/	
0,25	1-1- Find	out the differential equation for i(t).	ý	
0,5	1-2- Com	pute the value of the resistance R_1 and verify		
	that the val	lue of the inductance of the inductor is	$\frac{1}{25}$	
	L=0,3H.		0 2,5 5 Figure 4	

الصفحة	الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2018 – الموضوع NS30E				
8	المحقد الغيرياء والكيمياء — شعبة العلوم الرياضية "أ" و"بم"— حيار أيبليرية — ماحق: الغيرياء والكيمياء —				
0,5	1-3- Calculate the voltage between the terminals of the inductor at the steady state.				
	2-When the steady state reaches, we open the switch K, at an instant t assumed as a new origin of				
	time t=0.				
0,5	2-1- Just after opening the switch K, what is the value of the electric current intensity? Justify your				
0.75	answer.	•			
0,75	2-2- Based on the differential equation of the electric current intensity i(t), determine at the instant tension $1^{(1)}$:=0			
	he value of $\frac{di(t)}{dt}$ and that of the voltage between terminals of the inductor.				
0,25	3-At the moment of opening the switch, justify the role of the part of circuit which consists of the				
	diode and the resistor of resistance R_2 .				
	III- Forced oscillations in RLC series circuit				
	We set up the RLC circuit which consists of the following components mounted in series:				
	- a low frequency generator, which delivers a sinusoidal alternating voltage u(t), of a constant effect	tive			
	voltage and adjustable frequency;				
	- the resistor of the resistance, $Z(k\Omega)$				
	$R_3 = 1980\Omega;$				
	- the previous inductor (b);				
	- the capacitor of capacitance C_1 .				
	The experimental study gives the curve				
	which represents the variations of the				
	impedance Z of the RLC dipole as a				
	function of the frequency N (figure 5).				
	We will take: $\sqrt{2} = 1,4$ and $\pi^2 = 10$.				
0,25	1- Determine the value of the resonance 2				
	frequency.				
0,5	2- Calculate the value of the capacitance				
0.5	of the capacitor C_1 .				
0,5	3 -We denote by I_0 the maximum value				
	of the effective intensity I of electric current which flows in the circuit.	TT_)			
	т	HZ)			
	For I = $\frac{I_0}{\sqrt{2}}$, find out the relationship 0,25 0,5 Figure 5				
	between the impedance Z of the circuit and the resistance R_3 and r.				
	Deduce graphically the width of the passband –3db (bandwidth).				
	Exercise 3: Mechanics (4,75 points)				
	Part I and Part II are independent				
	Part I: study of the motion of an object in the air and in a liquid.				
	In swimming pools, we find diving boards from which the swimmers plunge into water. In this part of the exercise, we study the motion of a diver, after he leaves the diving board, in the air and in the water				

and in the water.

الصفحة 7 8	NS30E	الامتحان الوطنين الموحد للبكالوريا – الدورة العادية 2018 – الموضوع – هادة: الفيزياء والكيمياء – شعبة العلوم العلوم الرياضية "أ" و"بم"– حيار أنجليزية			
		is modelled by an object (S) with center of inertia G and of mass m. the motion of the center of inertia G of the object (S) in a frame of reference $R(O,\vec{k})$) linked		
	-	h assumed Galilean (figure 1)) miked		
	Given: m	$a=80 \text{ kg}$; the gravitational field strength: $g=10 \text{ m.s}^{-2}$; we take $\sqrt{2}=1,4$.			
	1- Study	of the motion of the center of inertia G in the air			
		diver leaves the diving board without initial at an instant of time assumed origin of time $(t_0 = 0)$ O			
	assumed a	re he hits the water, the motion in the air is as free fall. tant of time t the center of inertia G is placed at (S)			
		tant of time t_0 , the center of inertia G is placed at le h=10m above the surface of water, and it			
		with the origin of the frame of reference $R(O, \vec{k})$			
0,25	-	out the differential equation of the component V_z			
0,5	of the vel	locity of the center of inertia G. Trmine the fall time t_c of G in the air, and deduce its $V z$			
	velocity V _e when G hits the water. Figure 1				
	-	2- Study of the vertical motion of the center of inertia G in the water.			
	The diver	The diver hits the water with the velocity $\overrightarrow{v_e}$ of vertical direction. When he moves in water the path of			
	the center G is vertical. The object obeys to:				
	- A friction	- The weight P; - A frictional fluid force: $\vec{f} = -\lambda . \vec{v}$, where \vec{v} is the velocity of G at an instant t and λ is the coefficie of frictional fluid where $\lambda = 250 \text{ kg.s}^{-1}$.			
	- The upth	must force (Archimedes' force): $\vec{F} = -\frac{m}{d} \cdot \vec{g}$ where g is the gravitational field strengt	h and		
		the relative density of the diver. Int, when the diver hits the water, is assumed as a new origin of time (t=0), .			
0,5	2-1- Estab	blish the differential equation of the component V_z of G, we put $\tau = \frac{m}{\lambda}$.			
0,5	2-2- Dedu	ice the expression of the terminal velocity $v_{\ell z}$ in terms of τ, g , and d. Calculate its v			
0,5	2-3 - The s	solution of the differential equation is $v_z(t) = A + Be^{-\frac{t}{\tau}}$, where A and B are constants			
		in terms of $v_{\ell z}$, and B in terms of $v_{\ell z}$ and v_e .			
0,25		rmine the instant t_r when the diver changes the sense of his motion (we assume that t ach the bottom of the swimming pool).	he diver		
	Part II: study of an elastic pendulum The elastic pendulum studied in this part consists of a solid (S) with the center of inertia G and of mass m, which is attached to the end of a spring with non-contiguous turns and of length ℓ_0 when it is unstretched, its mass is negligible and its spring constant is K. The other end of the spring is fixed to a stand at the point P.				

لصفحة • <	NS30E	يمد للبكالوريا – الدورة العادية 2018 – الموضوع	الامتحان الوطني المو
8		- هعبة العلوم العلوم الرياخية "أ" و"بم"- خيار أنجليزية	– ماحة: الغيرياء والكيمياء –
	is fixed at We study a frame of Galilean. We locate displacem At rest pos	(S) slides without frictions on the inclined rod (T) at a P (figure 2). the motion of the center of inertia G of the solid in reference $R(O, \vec{i}, \vec{j})$ linked to the earth assumed the position of G at one instant of time by the ent x on the x-axis (O, \vec{i}) . sition, the center of inertia G of the solid coincides rigin O of the frame of reference ($x_G = 0$) (figure 2). $\pi^2 = 10$.	an angle α to the vertical line. The rod $ \begin{array}{c} $
0,25 0,5 0,5	field stren, 2-We disp positive d it at an int The curve acceleration displacem 2-1- By ap equation of 2-2- The s $x(t)=x_m c$	ss ℓ_{e} , the length of the spring at the rest point, in term gth g. place (S) from its rest position by the distance x_{m} , in direction, and we release stant (t = 0) without initial velocity. shown in figure 3 represents the variations of the on a_{x} of the centre of inertia G as function of the ent x where $-x_{m} \le x \le x_{m}$. oplying Newton's second law; establish the differentia of the displacement x(t). olution of the differential equation is: $\cos\left(\frac{2\pi}{T_{0}}t+\phi\right)$ he numerical expression of x(t).	the $a_x (m.s^{-2})$ 1,25 0,5 x(cm) 0
0,5	through G $(E_{pe} = 0)$ 3-1- Find energy of x and K. 3-2- The of the kinetic displacem Based on t	the conservation of the mechanical energy, the value of the spring constant K. Deduce the	elastic potential energy E_{pe} to be zero on.
			Figure 4
			-

.....

الصفحة 1 4	الامتحان الوطني الموحد للبكالوريا			++XHAX+ I HEYOZO +=0-U=0+ I 80XEX ===50 A 80E8++X ==XX8H=1 A 800HEA ===XHH= A 80XX8 ==E=00=1	المملكة المغربية وزارق التربية الولمحنية والتكوين المعنب والتعليم العالمي والبحث العلمبي
*		الدورة العادية 2018 -عناصر الإجابة-	NR30E	ي للتقويم والإمتحانات. والتوجيه	
4 3	مدة الإنجاز	الكيمياء	الفيزياء و		المادة
7	المعامل	الشعبة أو المسلك الشعبة أو المسلك			

	Chemistry (7 points)					
Question	Answers	Marking scale	Question reference in the framework			
	Part I					
1-1	The chemical equation of reaction	0,25	-Write the equation of the acid-base reaction and identify the two pairs involved.			
1-2	$\tau \approx 3,6\%$, HA is predominant.	0,5+0,25	 -Define the final progress rate of a reaction, and determine it using experimental data. -Calculate the final progress of the reaction that occurs between an acid and water taking into consideration the value of both the concentration and this acid's pH aqueous solution; then, compare it with the maximum progress. 			
1-3	$pK_A = 2pH + log(C - 10^{-pH})$; Verification of its value.	0,5 0,25	-Write and use the expression of the acid dissociation constant K_A associated with the reaction of an acid with water. -Know the relationship pK_A = -log K_A .			
1-4-1	The chemical equation of reaction	0,5	-Write the equation of titration reaction (use only one arrow)			
1-4-2	The process , $V_{\rm B} \approx 16, 3 {\rm mL}$	0,25+0,25	-Draw the progress table of a reaction and exploit it. -Write and use the expression of the acid dissociation constant K_A associated with the reaction of an acid with water.			
2-1	The chemical equation using a semi developed structural formula	0,5	Write the esterification and the hydrolysis equation.			
2-2	The method , $t_{1/2} = 7 \min$	0,5+0,25	-Define the half-life $t_{1/2}$ of a chemical reaction. -Determine the half-life $t_{1/2}$ of the chemical reaction graphically or through exploiting the experimental results.			
2-3	Curve (1), justification	0,25+0,25	-Know that a catalyst is a chemical specie that increases the rate of a chemical reaction without changing the equilibrium state of the system.			
2-4	The way, $v \approx 0,21 \text{ mol.} L^{-1}. \text{ min}^{-1}$	0,5 0,25	Determine graphically the value of the volumetric rate of reaction.Know the expression of the volume rate of reaction.			

الصفحة	
$\searrow 2$	NR30E
4	

3-1	3	0,5	-Recognise the anode electrode (oxidation) and the cathode electrode (reduction) using the flow of electric current imposed by an external voltage supply.
3-2	$2H_2O_{(\ell)} \longrightarrow O_{2(g)} + 4H^+_{(aq)} + 4e^-$	0,5	Write the half-equation that occurred in each electrode (use double arrows) and write the overall equation of the reaction during electrolysis (use one arrow).
3-3	Reach: $V(O_2) = \frac{I.V_m}{4N_A.e}.t$; $V(O_2) \approx 6 \text{ mL}$.	0,5 0,25	-Establish the relationship between the amount of substance of chemical specie produced or consumed, the current intensity and the operating duration of electrolysis. Use this relationship to determine other quantities (quantity of charge, progress of the reaction, change of the mass, volume of a gas, etc.).

	Physics (13 points)					
Exe 1	Question	Answers	Marking scale	Question reference in the framework		
	1-1	definition	0,25	Define and calculate the mass defect and the binding energy.		
	1-2	c	0,5	- Know the meaning (significance) of the symbol ${}^{A}_{Z}X$ and give the corresponding composition of the nucleus. - Recognise the isotopes of a chemical element. -Define the time constant τ and the half-life $t_{1/2}$.		
ransf	1-3	Reach $1 \text{Ci} \approx 3,73.10^{10} \text{ Bq}$.	0,5	- Know and exploit the law of the radioactive decay, and exploit its curve.		
ormations	1-4	The process; $a \approx 3,54.10^{10} \text{ Bq}$.	0,25 0,25	- Know that 1Bq is equal to one decay per second.		
Transformations nucléaires (3,25 points)	1-5	The way; $ \Delta E \approx 4,7 \text{ MeV}$;	0,25+0,25	- Establish the energy balance ΔE of a nuclear reaction using: mass energies and/or binding energies and/or the energy diagram. - Calculate the energy released (produced) by a nuclear reaction: $E_{pro} = \Delta E $. -Define the radioactivity: α , $\beta^+ \& \beta^-$ and the $\gamma - radiation$.		
nts)	2-1	The nature of the motion	0,5	-Know the characteristics of Lorentz force and the rule to determine its direction.		
	2-2	$OM = \frac{V_0.m(\alpha)}{e.B},$ OM \approx 41,5 cm	0,25 0,25	-Apply Newton's second law in the charged particle case inside a uniform magnetic field, with \overrightarrow{B} perpendicular to $\overrightarrow{v_0}$ in order to: * determine the type of motion;		

Exe2	Question	Answers	Marking scale	Question reference in the framework
	I- 1	the differential equation	0,25	-Know and exploit the relationship $i = \frac{dq}{dt}$ for
	2	E=6V;	0,25	a capacitor in receiver convention.
		Verification of the value of C.	0,25	 Know and exploit the relationship q = C.u. Find out the differential equation and verify its solution when the RC dipole is submitted to a
	3	ρ=50%	0,25	step voltage. -Recognise and represent the variation curves
				of $u_c(t)$ between the capacitor terminals and
				different physical quantities associated to it, and exploit them.
				-Exploit experimental documents in order to:
				-Know and exploit the expression of the electric energy stored in a capacitor.
	II- 1-1	The differential equation	0,25	Find out the differential equation and verify its solution when the RL dipole is submitted to a
Ele	1-2	$R_1 = 100\Omega$;	0,25	step voltage. - Exploit experimental documents in order to
Electricity (5 points)		Verification of the value of L	0,25	Recognise and represent the variation curves of current intensity $i(t)$ in terms of time across
	1-3	$u_L = 1V$	0,5	the inductor and different physical quantities associated to it, and exploit them. - Determine the two characteristics of the
ints)	2-1	$i = I_0 = 50 \mathrm{mA}$	0,25	inductor (the inductance L, the resistance r)
		justification.	0,25	exploiting experimental results. Know and exploit the time-constant expression. Know and exploit the voltage expression
	2-2	The process,	0,25	$u = r.i + L.\frac{di}{dt}$ between the inductor (coil)
		$\frac{\mathrm{di}(\mathrm{t})}{\mathrm{dt}}_{/\mathrm{t}=0} = -3,53.10^2 \mathrm{A.s^{-1}}$	0,25	terminals using the receiver convention. Know that the inductor delays the appearance
		$u_L \approx -105 V$.	0,25	and the disappearance of the current, and that the current intensity is a continuous function but the voltage between their terminals is a
	3	justify the role	0,25	discontinuous function at t=0.
	III- 1	$N_0 = 0,5 \text{kHz}$	0,25	- Recognise the electric resonance phenomenon and its characteristics.
	2	$C_1 \approx 0,33 \mu F$	0,5	-Know and exploit the impedance expression
	3	$Z = \sqrt{2}.(R_3 + r)$;	0,25	$Z = \frac{U}{I}$ of a circuit.
		$\Delta N \approx 1,05 \text{kHz}$	0,25	Exploit experimental documents in order to determine the width of the passband.

الصفحة	NR30E
4	
4	

Exercice3		Question	Answers	Marking scale	Question reference in the framework
Mech	Part I	1-1	$\frac{\mathrm{dv}_{z}}{\mathrm{dt}} = \mathrm{g}$	0,25	 -Define the vertical free fall. - Apply Newton's second law to find out the differential equation of a solid's centre of inertia motion in vertical free fall and solve it. - Know and exploit the characteristics of the uniformly accelerated straight line motion and its parametric equations (t is the parameter).
		1-2	t _c =1,4s;	0,25	
			$v_e = 14 \text{m.s}^{-1}$.	0,25	
		2-1	$\frac{\mathrm{d}\mathbf{v}_{z}}{\mathrm{d}\mathbf{t}} + \frac{1}{\tau}\mathbf{v}_{z} + g\left(\frac{1}{\mathrm{d}} - 1\right) = 0$	0,5	 Apply Newton's second law to find out the differential equation of a solid's centre of inertia motion in frictional vertical fall. Know and exploit expressions of the
		2-2	$\mathbf{v}_{\ell} = \tau.g.\left(1 - \frac{1}{d}\right);$	0,25	instantaneous velocity vector and the acceleration vector. -Apply Newton's second law to determine the
			$v_{\ell z} \approx -0.35 \mathrm{m.s^{-1}}$	0,25	kinetic quantities v_G and a_G and dynamic quantities and exploit them.
		2-3		0,25	
		2.4		0,25	-
anic		2-4	$t_r \approx 1,18s$.	0,25	
Mechanics (4,75 points)	Part II	1	$\ell_{\rm e} = \frac{\mathrm{mg}\cos\alpha}{\mathrm{K}} + \ell_{\rm 0}$	0,25	-Apply Newton's second law to determine the kinetic quantities $\overrightarrow{\mathbf{v}_G}$ and $\overrightarrow{a_G}$ and dynamic quantities and exploit them.
		2-1	the differential equation	0,5	-Apply Newton's second law to the oscillating system (solid-spring) to establish the differential equation of motion and verify its solution when the oscillating system vibrates in the following situations: horizontal, inclined or vertical.
		2-2	x(t)=1,5.10 ⁻² .cos(5 π t) (m)	0,5	Determine the type of motion of the oscillating system (solid-spring); write the equations: $x_G(t), v_G(t) = \frac{dx}{dt}$ and $\ddot{x}_G(t)$ and exploit them.
		3-1	Reach to : $E_p = \frac{1}{2}Kx^2$	0,5	Know and exploit the expression of the elastic potential energy.
		3-2	$K = 80 \text{ N.m}^{-1}$; m=320g.	0,25 0,25	 -Know and exploit the expression of the mechanical energy of a solid-spring system. -Exploit the conservation and the non-conservation of the mechanical energy of a solid-spring system. -Exploit the energy diagrams. Know and exploit both the expression of the natural period and that of the natural frequency of the oscillating system (solid-spring).