

The use of the non-programmable scientific calculator is allowed This exam paper consists of four exercises; one in Chemistry and three in Physics.

## Chemistry (7points)

- The chemical reactions of water with an acid and with an ester,
- The electrolysis of water.


## Physics (13 points)

## Exercise 1: Nuclear Transformations (3,25 points)

- The $\alpha$-decay of the radium,
- The motion of the $\alpha$-particle in a uniform magnetic field.


## * Exercise 2: Electricity (5 points)

- Response of the RC circuit to a step of voltage,
- Response of the RL circuit to a step of voltage,
- Forced oscillations in RLC series circuit.


## Exercise 3: Mechanics ( 4,75 points)

- The motion of an object in the air and in a liquid,
- The motion of an elastic pendulum.



## Chemistry (7 points)

Water is chemical specie which plays an important role in chemistry of aqueous solutions. We will study in this exercise:

- An aqueous solution of an acid;
- Hydrolysis of an ester;
- Electrolysis of water.


## 1-Study of an aqueous solution of an acid HA:

We prepare an aqueous solution $\mathrm{S}_{\mathrm{A}}$ of 2-methylpropanoic acid, denoted HA , of volume V and molar concentration $\mathrm{C}=10^{-2} \mathrm{~mol} . \mathrm{L}^{-1}$. We denote by $\mathrm{A}^{-}$the conjugate base of HA.
The measurement of pH of the solution $\mathrm{S}_{\mathrm{A}}$ gives the value $\mathrm{pH}=3.44$.

1-1-Write the chemical equation of the reaction between the acid HA and water.
1-2- Calculate the final progress rate of the reaction, and deduce which chemical specie is predominant of the pair $\mathrm{HA}_{\text {(aq) }} / \mathrm{A}_{\text {(aq) }}^{-}$.
1-3- Find out the expression of the constant $\mathrm{pK}_{\mathrm{A}}$ of the pair $\mathrm{HA}_{(\mathrm{aq})} / \mathrm{A}_{(\mathrm{aq})}^{-}$in terms of C and pH .
Check that $\mathrm{pK}_{\mathrm{A}} \approx 4.86$.
1-4-We take a volume $V_{A}=20 \mathrm{~mL}$ of the aqueous solution $\mathrm{S}_{\mathrm{A}}$ to which we add progressively a volume $\mathrm{V}_{\mathrm{B}}$ of an aqueous solution $\left(\mathrm{S}_{\mathrm{B}}\right)$ of sodium hydroxide $\mathrm{Na}_{(\mathrm{aq})}^{+}+\mathrm{HO}_{(\mathrm{aq})}^{-}$of molar concentration $\mathrm{C}_{\mathrm{B}}=\mathrm{C}$ where $V_{B}<20 \mathrm{~mL}$.
1-4-1- Write the chemical equation of the occurring reaction (the reaction is considered complete).
1-4-2- Find out the value of the volume $V_{B}$ of the aqueous solution ( $S_{B}$ ) added at the moment when pH of the reaction mixture is $\mathrm{pH}=5.50$.

## 2- Hydrolysis of an ester:

The ester ethyl 2-methylpropanoate, whose structural formula is characterized by strawberry flavour.


The hydrolysis of this ester, denoted E, produces an acid and an alcohol.
We perform two equimolar mixtures of the ester E and water. The volume of each mixture is $\mathrm{V}_{0}$.
The curves (1) and (2), shown in figure on the right, represent the evolution of the amount of the ester E during the time at constant temperature $\theta$.


One of the two curves is obtained when the catalyst is not used during the hydrolysis reaction.
2-1- Using a structural formulae, write the equation of the occurring reaction.
2-2- Determine graphically the half-life of the chemical reaction corresponding to curve (1).

3-3- Find out the expression of the volume of the dioxygen gas generated at an instant $t$, in terms of $I$, $\mathrm{V}_{\mathrm{m}}, \mathrm{N}_{\mathrm{A}}$,e and t . Calculate its value at the instant $\mathrm{t}=8 \mathrm{~min}$.

## Physics (13 points)

## Exercise 1: Nuclear transformations ( $\mathbf{3 , 2 5}$ points)

We aim in this exercise at studying the $\alpha$-decay of radium and the motion of $\alpha$-particle in a uniform magnetic field.
1- In 1898, Marie and Pierre Curie announced the discovery of the two radioactive elements: the polonium and the radium. The radium ${ }_{88}^{226} \mathrm{Ra}$ which decays to radon ${ }_{86}^{222} \mathrm{Rn}$, is considered as an historical example of the $\alpha$-decay. The radium was chosen as a reference for calculating the activity of radioactive samples. The activity was expressed in Curie (1Ci) for years, before using the becquerel as a unit.

NS30E



The Curie $(1 \mathrm{Ci})$ is the activity of a sample of one gram $(1 \mathrm{~g})$ of radium 226.
Given: - Molar mass of radium: $\mathrm{M}=226 \mathrm{~g} . \mathrm{mol}^{-1}$; Avogadro constant : $\mathrm{N}_{\mathrm{A}}=6,02.10^{23} \mathrm{~mol}^{-1}$;

- The binding energy of the radium nucleus: $\mathrm{E}_{\ell}\left({ }_{88}^{226} \mathrm{Ra}\right)=1,7311.10^{3} \mathrm{MeV}$;
- The binding energy of the radon nucleus : $\mathrm{E}_{\ell}\left({ }_{86}^{222} \mathrm{Rn}\right)=1,7074.10^{3} \mathrm{MeV}$;
- The binding energy of the helium nucleus: $\mathrm{E}_{\ell}\left({ }_{2}^{4} \mathrm{He}\right)=28,4 \mathrm{MeV}$;
- Decay constant of the radium: $\lambda=1,4.10^{-11} \mathrm{~s}^{-1} ; 1$ year $=365,25$ days;

1-3- Show that: $1 \mathrm{Ci} \approx 3,73.10^{10} \mathrm{~Bq}$.

1-4- What would be in June 2018 the activity, in Bq unit, of 1 g of radium's sample, knowing that its activity in June 1898 was 1Ci.

1-5- Calculate in MeV , the energy released (produced) by a decay of radium nucleus.
2- The $\alpha$-particle produced passes through the gap O with the velocity $\overrightarrow{\mathrm{V}_{0}}$ of horizontal direction, and penetrates in the region of the uniform magnetic field, of magnitude $\mathrm{B}=1,5 \mathrm{~T}$, which is perpendicular to the vertical plan $(\pi)$. This particle is deflected and hits the screen at the point $M$ (see figure on the right).

The weight of the $\alpha$-particle, of charge $q=+2 e$, is negligible about the Lorentz force acting on it.

2-1- By applying Newton's second law, determine the nature of the motion of the $\alpha$-particle in the uniform magnetic field $\vec{B}$.

2-2- Express the distance $O M$ in terms of $m(\alpha)$, e, $B$, and $V_{0}$. Calculate its value.
We give: - Mass of the $\alpha$-particle: $\mathrm{m}(\alpha)=6,6447.10^{-27} \mathrm{~kg}$;

- $\quad \mathrm{V}_{0}=1,5.10^{7} \mathrm{~m} \cdot \mathrm{~s}^{-1} \quad ; \quad \mathrm{e}=1,6.10^{-19} \mathrm{C}$.


## Exercise 2: Electricity (5 points)

The aim of this exercise is studying:

- The response of the RC circuit to a step of voltage,
- The response of the RL circuit to a step of voltage,
- The current electric resonance phenomenon in RLC circuit.



## I- Response of the RC circuit to a step of voltage.

We set up the mounting shown in figure 1 which consists of:

- a power supply $G$ of voltage, its electromotive force is E ;
- a resistor of resistance $R=2 k \Omega$;
- a capacitor of capacitance C , without initial charge;
- switch K;

At the instant $\mathrm{t}=0$ the switch K is closed. We denote $\mathrm{u}_{\mathrm{C}}$ the voltage between the terminals of the capacitor.
The curve shown in figure 2 represents the variations of $\frac{d u_{C}}{d t}$ as a function of $u_{C}$.

1- Find out the differential equation for the voltage $\mathrm{u}_{\mathrm{C}}$.

2- Determine the value of $E$ and verify that $C=10 \mathrm{nF}$.
3- We define the energetical yield of the charging process of the capacitor by the expression $\rho=\frac{E_{e}}{E_{g}}$ where $E_{e}$ is the energy stored in the capacitor at the steady state, and $\mathrm{E}_{\mathrm{g}}=$ C. $\mathrm{E}^{2}$ is the energy delivered by the power supply G.
Determine the value of $\rho$.

## II-Response of the RL circuit to a step of voltage

We set up the mounting shown in figure 3. It consists of:

- a power supply of voltage of e.m.f $E=6 \mathrm{~V}$.
- two resistors of resistance $R_{1}$ and $R_{2}=2 k \Omega$;


Figure 2


Figure 3

- an inductor (b) of inductance $L$ and of resistance $r=20 \Omega$;
- a switch K;
- an ideal diode D of knee of voltage (threshold) $\mathrm{u}_{\mathrm{s}}=0$.

1- At an instant $t=0$, the switch $K$ is closed. An appropriate datalogger gives the curve which represents the evolution of electric current $i(t)$ flowing in the circuit(figure 4). The line ( T ) is the tangent of the curve at the instant $\mathrm{t}=0$.

1-1-Find out the differential equation for $i(t)$.
1-2-Compute the value of the resistance $R_{1}$ and verify that the value of the inductance of the inductor is $\mathrm{L}=0,3 \mathrm{H}$.


1-3- Calculate the voltage between the terminals of the inductor at the steady state.
$\mathbf{2}$-When the steady state reaches, we open the switch $K$, at an instant $t$ assumed as a new origin of time $\mathrm{t}=0$.
2-1- Just after opening the switch $K$, what is the value of the electric current intensity? Justify your answer.
2-2- Based on the differential equation of the electric current intensity $i(t)$, determine at the instant $t=0$ the value of $\frac{\mathrm{di}(\mathrm{t})}{\mathrm{dt}}$ and that of the voltage between terminals of the inductor.
3-At the moment of opening the switch, justify the role of the part of circuit which consists of the diode and the resistor of resistance $R_{2}$.

## III- Forced oscillations in RLC series circuit

We set up the RLC circuit which consists of the following components mounted in series:

- a low frequency generator, which delivers a sinusoidal alternating voltage $u(t)$, of a constant effective voltage and adjustable frequency;
- the resistor of the resistance,
$\mathrm{R}_{3}=1980 \Omega$;
- the previous inductor (b);
- the capacitor of capacitance $C_{1}$.

The experimental study gives the curve which represents the variations of the impedance $Z$ of the RLC dipole as a function of the frequency N (figure 5). We will take: $\sqrt{2}=1,4$ and $\pi^{2}=10$.

1- Determine the value of the resonance frequency.
0,5 2-Calculate the value of the capacitance of the capacitor $\mathrm{C}_{1}$.
3-We denote by $I_{0}$ the maximum value of the effective intensity I of electric current which flows in the circuit.
For $I=\frac{I_{0}}{\sqrt{2}}$, find out the relationship
 between the impedance $Z$ of the circuit and the resistance $\mathrm{R}_{3}$ andr.
Deduce graphically the width of the passband -3 db (bandwidth).

## Exercise 3: Mechanics (4,75 points)

## Part I and Part II are independent

## Part I: study of the motion of an object in the air and in a liquid.

In swimming pools, we find diving boards from which the swimmers plunge into water.
In this part of the exercise, we study the motion of a diver, after he leaves the diving board, in the air and in the water.

The diver is modelled by an object ( S ) with center of inertia G and of mass m .
We study the motion of the center of inertia $G$ of the object $(S)$ in a frame of reference $R(O, \vec{k})$ linked to the earth assumed Galilean (figure 1)
Given: $\mathrm{m}=80 \mathrm{~kg}$; the gravitational field strength: $\mathrm{g}=10 \mathrm{~m} . \mathrm{s}^{-2}$; we take $\sqrt{2}=1,4$.

## 1- Study of the motion of the center of inertia $G$ in the air

After the diver leaves the diving board without initial velocity, at an instant of time assumed origin of time $\left(t_{0}=0\right)$ , and before he hits the water, the motion in the air is assumed as free fall.
At the instant of time $t_{0}$, the center of inertia $G$ is placed at the altitude $\mathrm{h}=10 \mathrm{~m}$ above the surface of water, and it coincides with the origin of the frame of reference $R(O, \vec{k})$ $\left(\mathrm{z}_{\mathrm{G}}=0\right)$ (Figure 1).

1-1- Find out the differential equation of the component $v_{z}$ of the velocity of the center of inertia G.
1-2- Determine the fall time $t_{c}$ of $G$ in the air, and deduce its velocity $\mathrm{V}_{\mathrm{e}}$ when G hits the water.


Figure 1

## 2- Study of the vertical motion of the center of inertia G in the water.

The diver hits the water with the velocity $\overrightarrow{v_{e}}$ of vertical direction. When he moves in water the path of the center G is vertical.
The object obeys to:

- The weight $\vec{P}$;
- A frictional fluid force: $\vec{f}=-\lambda \cdot \vec{v}$, where $\vec{v}$ is the velocity of $G$ at an instant $t$ and $\lambda$ is the coefficient of frictional fluid where $\lambda=250 \mathrm{~kg} . \mathrm{s}^{-1}$.
- The upthrust force (Archimedes' force) : $\overrightarrow{\mathrm{F}}=-\frac{\mathrm{m}}{\mathrm{d}} \cdot \vec{g}$ where g is the gravitational field strength and $\mathrm{d}=0.9$ is the relative density of the diver.
The instant, when the diver hits the water, is assumed as a new origin of time $(t=0)$, .
2-1- Establish the differential equation of the component $V_{z}$ of $G$, we put $\tau=\frac{m}{\lambda}$.
2-2- Deduce the expression of the terminal velocity $\mathrm{v}_{\ell \mathrm{z}}$ in terms of $\tau, \mathrm{g}$, and d . Calculate its value.
2-3- The solution of the differential equation is $v_{z}(t)=A+B e^{-\frac{t}{\tau}}$, where $A$ and $B$ are constants. Express A in terms of $v_{\ell z}$, and B in terms of $v_{\ell z}$ and $v_{e}$.
2-4- Determine the instant $t_{r}$ when the diver changes the sense of his motion (we assume that the diver doesn't reach the bottom of the swimming pool).


## Part II: study of an elastic pendulum

The elastic pendulum studied in this part consists of a solid ( S ) with the center of inertia G and of mass m , which is attached to the end of a spring with non-contiguous turns and of length $\ell_{0}$ when it is unstretched, its mass is negligible and its spring constant is K . The other end of the spring is fixed to a stand at the point $P$.

The solid (S) slides without frictions on the inclined rod (T) at an angle $\alpha$ to the vertical line. The rod is fixed at P (figure2).
We study the motion of the center of inertia $G$ of the solid in a frame of reference $R(O, \vec{i}, \vec{j})$ linked to the earth assumed Galilean.
We locate the position of $G$ at one instant of time by the displacement x on the x -axis $(\mathrm{O}, \overrightarrow{\mathrm{i}})$.

At rest position, the center of inertia $G$ of the solid coincides


Figure 2 with the origin O of the frame of reference $\left(\mathrm{x}_{\mathrm{G}}=0\right)$ (figure 2).
We take: $\pi^{2}=10$.

1- Express $\ell_{\mathrm{e}}$, the length of the spring at the rest point, in terms of $\ell_{0}, \mathrm{~m}, \mathrm{~K}, \alpha$ and the gravitational field strength g .
2-We displace ( S ) from its rest position by the distance $\mathrm{x}_{\mathrm{m}}$, in the positive direction, and we release
it at an instant $(t=0)$ without initial velocity.
The curve shown in figure 3 represents the variations of the acceleration $\mathrm{a}_{\mathrm{x}}$ of the centre of inertia G as function of the displacement x where $-\mathrm{x}_{\mathrm{m}} \leq \mathrm{x} \leq \mathrm{x}_{\mathrm{m}}$.
2-1- By applying Newton's second law; establish the differential equation of the displacement $x(t)$.
2-2- The solution of the differential equation is:


Figure 3
$\mathrm{x}(\mathrm{t})=\mathrm{x}_{\mathrm{m}} \cos \left(\frac{2 \pi}{\mathrm{~T}_{0}} \mathrm{t}+\varphi\right)$
Find out the numerical expression of $\mathrm{x}(\mathrm{t})$.
3- We choose the gravitational potential energy to be $\operatorname{zero}\left(\mathrm{E}_{\mathrm{pp}}(\mathrm{O})=0\right)$ on the horizontal plane passes through G at the equilibrium position (reference level) and the elastic potential energy $\mathrm{E}_{\mathrm{pe}}$ to be zero $\left(\mathrm{E}_{\mathrm{pe}}=0\right)$ when the spring is stretched at the equilibrium position.
3-1-Find out, in an instant $t$, the expression of the potential energy of the oscillating system $E_{p}=E_{p p}+E_{p e}$ in terms of $x$ and $K$.

3-2-The curve shown in figure 4 represents the variation of the kinetic energy of the oscillator as a function of the displacement x .
Based on the conservation of the mechanical energy, determine the value of the spring constant K. Deduce the value of the mass $m$.


Figure 4


| Chemistry (7 points) |  |  |  |  |  |
| :---: | :--- | :---: | :--- | :--- | :---: |
| Question | Answers |  | Marking <br> scale | Quart I |  |

NR30E

-

| 3-1 | $\mathbf{3}$ | $\mathbf{0 , 5}$ | -Recognise the anode electrode (oxidation) and <br> the cathode electrode (reduction) using the flow <br> of electric current imposed by an external <br> voltage supply. |
| :---: | :--- | :---: | :--- |
| $\mathbf{3 - 2}$ | $2 \mathrm{H}_{2} \mathrm{O}_{(\ell)} \rightleftarrows \mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{H}_{(\text {aq) }}^{+}+4 \mathrm{e}^{-}$ | $\mathbf{0 , 5}$ | Write the half-equation that occurred in each <br> electrode (use double arrows) and write the <br> overall equation of the reaction during <br> electrolysis (use one arrow). |
| $\mathbf{3 - 3}$ | Reach : $\mathrm{V}\left(\mathrm{O}_{2}\right)=\frac{\mathrm{I} . \mathrm{V}_{\mathrm{m}}}{4 \mathrm{~N}_{\mathrm{A}} \cdot \mathrm{e}}$. |  |  |
| $\mathrm{V}\left(\mathrm{O}_{2}\right) \approx 6 \mathrm{~mL}$. |  |  |  |$\quad \mathbf{0 , 5}$| -Establish the relationship between the amount <br> of substance of chemical specie produced or <br> consumed, the current intensity and the <br> operating duration of electrolysis. Use this <br> relationship to determine other quantities <br> (quantity of charge, progress of the reaction, <br> change of the mass, volume of a gas, etc.). |
| :--- |


| Physics (13 points) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \hline \text { Exe } \\ 1 \end{gathered}$ | Question | Answers | Marking scale | Question reference in the framework |
|  | 1-1 | definition | 0,25 | Define and calculate the mass defect and the binding energy. |
|  | 1-2 | c | 0,5 | - Know the meaning (significance) of the symbol ${ }_{Z}^{A} X$ and give the corresponding composition of the nucleus. <br> - Recognise the isotopes of a chemical element. <br> -Define the time constant $\tau$ and the half-life $t_{1 / 2}$. |
|  | 1-3 | Reach $1 \mathrm{Ci} \approx 3,73.10^{10} \mathrm{~Bq}$. | 0,5 | - Know and exploit the law of the radioactive decay, and exploit its curve. <br> - Know that 1 Bq is equal to one decay per second. |
|  | 1-4 | $\begin{aligned} & \text { The process; } \\ & \mathrm{a} \approx 3,54 \cdot 10^{10} \mathrm{~Bq} \end{aligned}$ | 0,25 $\mathbf{0 , 2 5}$ |  |
|  | 1-5 | The way ; $\|\Delta \mathrm{E}\| \approx 4,7 \mathrm{MeV}$; | 0,25+0,25 | - Establish the energy balance $\Delta E$ of a nuclear reaction using: mass energies and/or binding energies and/or the energy diagram. <br> - Calculate the energy released (produced) by a nuclear reaction: $E_{p r o}=\|\Delta E\|$. <br> -Define the radioactivity: $\alpha, \beta^{+} \& \beta^{-}$and the $\gamma$-radiation. |
|  | 2-1 | The nature of the motion | 0,5 | -Know the characteristics of Lorentz force and the rule to determine its direction. <br> -Apply Newton's second law in the charged particle case inside a uniform magnetic field, with $\vec{B}$ perpendicular to $\overrightarrow{\mathrm{v}_{0}}$ in order to: <br> * determine the type of motion; |
|  | 2-2 | $\begin{aligned} & \mathrm{OM}=\frac{\mathrm{V}_{0} \cdot \mathrm{~m}(\alpha)}{\mathrm{e} \cdot \mathrm{~B}}, \\ & \mathrm{OM} \simeq 41,5 \mathrm{~cm} \end{aligned}$ | $\mathbf{0 , 2 5}$ $\mathbf{0 , 2 5}$ |  |

NR30E



| Exe2 | Question | Answers | Marking scale | Question reference in the framework |
| :---: | :---: | :---: | :---: | :---: |
|  | I- 1 | the differential equation <br> $\mathrm{E}=6 \mathrm{~V}$; <br> Verification of the value of C. $\rho=50 \%$ | $\mathbf{0 , 2 5}$ <br> $\mathbf{0 , 2 5}$ <br> $\mathbf{0 , 2 5}$ <br> $\mathbf{0 , 2 5}$ | -Know and exploit the relationship $i=\frac{d q}{d t}$ for <br> a capacitor in receiver convention. <br> - Know and exploit the relationship $q=C . u$. <br> -Find out the differential equation and verify its solution when the RC dipole is submitted to a step voltage. <br> -Recognise and represent the variation curves of $u_{C}(t)$ between the capacitor terminals and different physical quantities associated to it, and exploit them. <br> -Exploit experimental documents in order to: <br> -Know and exploit the expression of the electric energy stored in a capacitor. |
|  | II- 1-1 | The differential equation | 0,25 | Find out the differential equation and verify its solution when the RL dipole is submitted to a step voltage. <br> - Exploit experimental documents in order to... Recognise and represent the variation curves of current intensity $i(t)$ in terms of time across the inductor and different physical quantities associated to it, and exploit them. <br> - Determine the two characteristics of the inductor (the inductance $L$, the resistance $r$ ) exploiting experimental results. <br> Know and exploit the time-constant expression. Know and exploit the voltage expression $u=r . i+L . \frac{d i}{d t}$ between the inductor (coil) terminals using the receiver convention. Know that the inductor delays the appearance and the disappearance of the current, and that the current intensity is a continuous function but the voltage between their terminals is a discontinuous function at $\mathrm{t}=0$. |
|  | 1-2 | $\mathrm{R}_{1}=100 \Omega ;$ <br> Verification of the value of L | $\mathbf{0 , 2 5}$ $\mathbf{0 , 2 5}$ |  |
|  | 1-3 | $\mathrm{u}_{\mathrm{L}}=1 \mathrm{~V}$ | 0,5 |  |
|  | 2-1 | $\mathrm{i}=\mathrm{I}_{0}=50 \mathrm{~mA}$ <br> justification. | $\begin{aligned} & \mathbf{0 , 2 5} \\ & \mathbf{0 , 2 5} \end{aligned}$ |  |
|  | 2-2 | $\begin{aligned} & \text { The process, } \\ & \frac{\mathrm{di}(\mathrm{t})}{\mathrm{dt} \quad} \quad=-3,53 \cdot 10^{2} \mathrm{~A} \cdot \mathrm{~s}^{-1} \\ & \mathrm{u}_{\mathrm{L}} \approx-105 \mathrm{~V} . \end{aligned}$ | $\mathbf{0 , 2 5}$ $\mathbf{0 , 2 5}$ $\mathbf{0 , 2 5}$ |  |
|  | 3 | justify the role | 0,25 |  |
|  | III- 1 | $\mathrm{N}_{0}=0,5 \mathrm{kHz}$ | 0,25 | - Recognise the electric resonance phenomenon and its characteristics. <br> -Know and exploit the impedance expression $\mathrm{Z}=\frac{\mathrm{U}}{\mathrm{I}}$ of a circuit. <br> Exploit experimental documents in order to determine the width of the passband. |
|  | 2 | $\mathrm{C}_{1} \approx 0,33 \mu \mathrm{~F}$ | 0,5 |  |
|  | 3 | $\begin{gathered} \mathrm{Z}=\sqrt{2} .\left(\mathrm{R}_{3}+\mathrm{r}\right) ; \\ \Delta \mathrm{N} \approx 1,05 \mathrm{kHz} \end{gathered}$ | $\mathbf{0 , 2 5}$ $\mathbf{0 , 2 5}$ |  |

NR30E

迬

| Exercice3 |  | Question | Answers | Marking scale | Question reference in the framework |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 管 | 凖 | 1－1 | $\begin{gathered} \frac{\mathrm{dv}_{\mathrm{z}}}{\mathrm{dt}}=\mathrm{g} \\ \mathrm{t}_{\mathrm{c}}=1,4 \mathrm{~s} \\ \mathrm{v}_{\mathrm{e}}=14 \mathrm{~m} \cdot \mathrm{~s}^{-1} . \end{gathered}$ | $\begin{aligned} & \mathbf{0 , 2 5} \\ & \hline \mathbf{0 , 2 5} \\ & \mathbf{0 , 2 5} \end{aligned}$ | －Define the vertical free fall． <br> －Apply Newton＇s second law to find out the differential equation of a solid＇s centre of inertia motion in vertical free fall and solve it． －Know and exploit the characteristics of the uniformly accelerated straight line motion and its parametric equations（ t is the parameter）． |
|  |  | 2－1 | $\begin{aligned} & \frac{\mathrm{dv}_{\mathrm{z}}}{\mathrm{dt}}+\frac{1}{\tau} \mathrm{v}_{\mathrm{z}}+\mathrm{g}\left(\frac{1}{\mathrm{~d}}-1\right)=0 \\ & \mathrm{v}_{\ell}=\tau \cdot \mathrm{g} \cdot\left(1-\frac{1}{\mathrm{~d}}\right) ; \\ & \mathrm{v}_{\ell \mathrm{z}} \approx-0,35 \mathrm{~m} \cdot \mathrm{~s}^{-1} \end{aligned}$ | $\begin{aligned} & \hline \mathbf{0 , 5} \\ & \hline \mathbf{0 , 2 5} \\ & \mathbf{0 , 2 5} \end{aligned}$ | －Apply Newton＇s second law to find out the differential equation of a solid＇s centre of inertia motion in frictional vertical fall． <br> －Know and exploit expressions of the instantaneous velocity vector and the acceleration vector． <br> －Apply Newton＇s second law to determine the kinetic quantities $\overrightarrow{\mathrm{v}_{\mathrm{G}}}$ and $\overrightarrow{a_{G}}$ and dynamic quantities and exploit them． |
|  |  | 2－3 | $\begin{gathered} \mathrm{A}=\mathrm{v}_{\ell \mathrm{z}} ; \\ \mathrm{B}=\mathrm{v}_{\mathrm{e}}-\mathrm{v}_{\ell \mathrm{z}} . \end{gathered}$ | $\begin{aligned} & 0,25 \\ & 0,25 \end{aligned}$ |  |
|  |  | 2－4 | $\mathrm{t}_{\mathrm{r}} \approx 1,18 \mathrm{~s}$ | 0，25 |  |
|  |  | 1 | $\ell_{\mathrm{e}}=\frac{\mathrm{mg} \cos \alpha}{\mathrm{K}}+\ell_{0}$ | 0，25 | －Apply Newton＇s second law to determine the kinetic quantities $\overrightarrow{\mathrm{v}_{\mathrm{G}}}$ and $\overrightarrow{a_{G}}$ and dynamic quantities and exploit them． |
|  |  | 2－1 | the differential equation | 0，5 | －Apply Newton＇s second law to the oscillating system（solid－spring）to establish the differential equation of motion and verify its solution when the oscillating system vibrates in the following situations：horizontal，inclined or vertical． |
|  |  | 2－2 | $\begin{aligned} & x(t)=1,5 \cdot 10^{-2} \cdot \cos (5 \pi t) \\ & (\mathrm{m}) \end{aligned}$ | 0，5 | Determine the type of motion of the oscillating system（solid－spring）；write the equations： $x_{G}(t), v_{G}(t)=\frac{d x}{d t}$ and $\ddot{x}_{G}(t)$ and exploit them． |
|  |  | 3－1 | Reach to： $\mathrm{E}_{\mathrm{p}}=\frac{1}{2} \mathrm{Kx}^{2}$ | 0，5 | Know and exploit the expression of the elastic potential energy． |
|  |  | 3－2 | $\mathrm{K}=80 \mathrm{~N} \cdot \mathrm{~m}^{-1} ;$ $\mathrm{m}=320 \mathrm{~g} .$ | $\begin{aligned} & \hline 0,25 \\ & 0,25 \end{aligned}$ | －Know and exploit the expression of the mechanical energy of a solid－spring system． －Exploit the conservation and the non－ conservation of the mechanical energy of a solid－spring system． <br> －Exploit the energy diagrams． <br> Know and exploit both the expression of the natural period and that of the natural frequency of the oscillating system（solid－spring）． |

