الصفحة 1 7 *۱		الامتحان الوطني الموحد للبكالوريا المسالك الحولية الدورة العادية 2020 - الموضوع –		۲۵۵۵۲۲ ۲۵۵۲۲ ۲۵۵۲۲ ۲۵۵۲۲ ۲۵۵۵۲ ۲۵۵۵۲ ۲۵۵۲۲ ۲۵۵۲۲ ۸ ۲۵۵۶ ۲۵۵۶ ۲۵۵۶ ۲۵۵۶ ۸ ۲۵۵۶ ۲۵۵۶ ۲۵۵۶ ۲۵۵۶ ۲۵۵۶ ۱ للتقویم والامتحانات	المبلكة المغربية ورارة التربية الوتهنية والتحوين المعنو والتعليم العالمر وبالبحث العلم المركز الوطني
	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS				
باز 3	مدة الإنم	الفيزياء والكيمياء			المادة
7	العلوم التجريبية مسلك العلوم الفيزيائية (خيار إنجليزية)			شعبة العلوم التجري	الشعبة أو المسلك

The use of a non-programmable scientific calculator is allowed

Literal expressions should be given before doing numerical calculations

This exam paper consists of five exercises

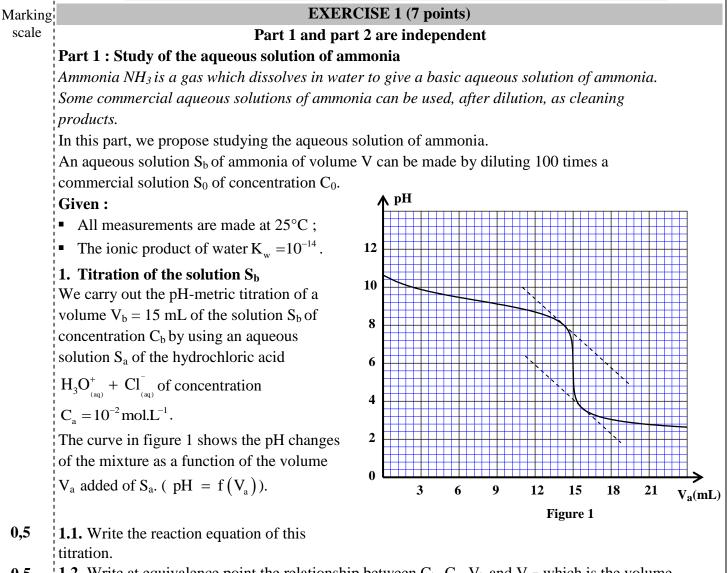
EXERCISE 1 (7 points)

- Study of the aqueous solution of ammonia
- Study of the electrochemical cell of silver-chromium

EXERCISE 2 (3 points)

- Propagation of waves.

EXERCISE 3 (2,5 points)


- Disintegration of the polonium 210.

EXERCISE 4 (5 points)

- Response of RL dipole to a step voltage.
- Study of damping and maintaining oscillations in a RLC series circuit

EXERCISE 5 (2,5 points)

- Study of the vertical falling motion of a ball in a viscous liquid

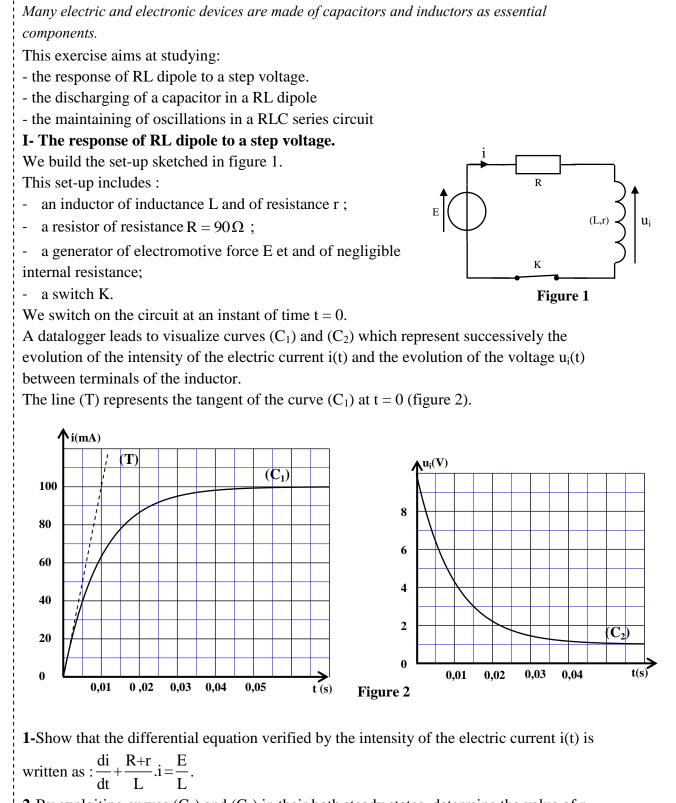
- **0,5 1.2.** Write at equivalence point the relationship between C_b , C_a , V_b and V_{aE} which is the volume added of the solution S_a at equivalence point.
- **0,5 1.3.** Show that the concentration C_b is $C_b = 10^{-2}$ mol.L⁻¹ then deduce the value of C_0 .
- **0,5 1.4.** Choose from the following acid-base indicators the appropriate one for this titration. Justify your answer.

Indicator	Methyl orange	Methyl red	Phenolphtalein
pH-range	3,1-4,4	4,2-6,2	8,2 - 10

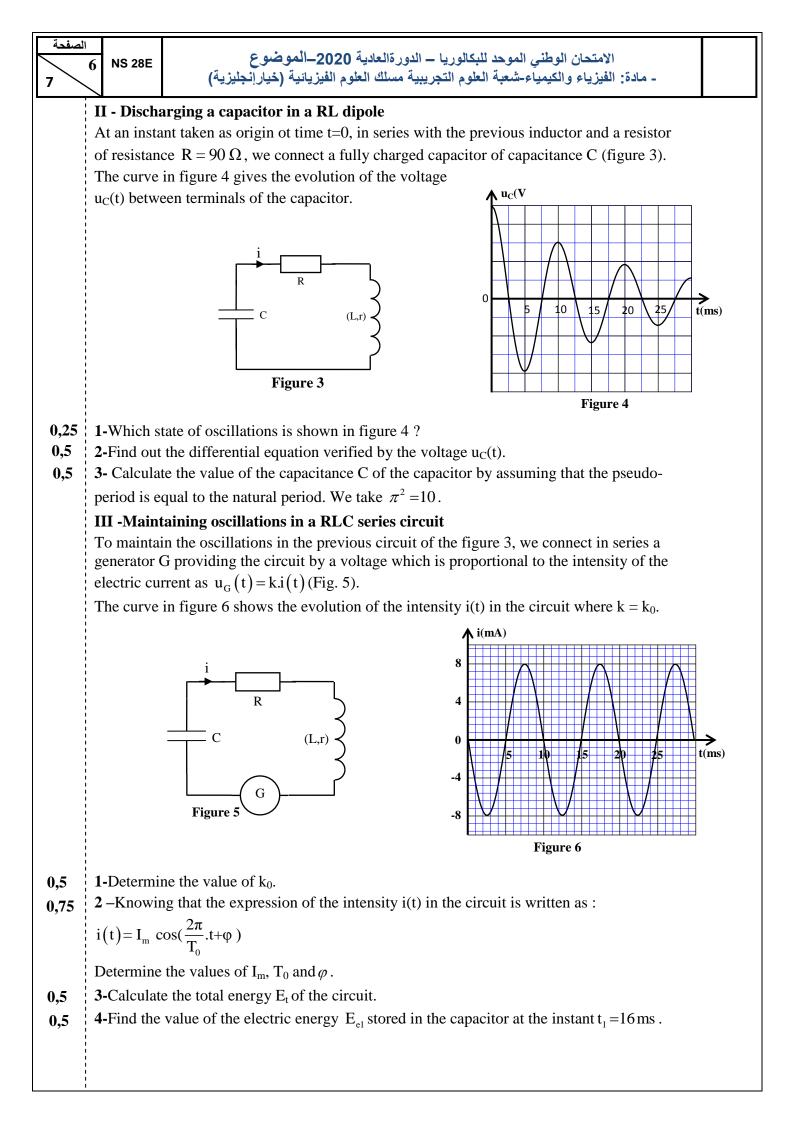
2. Study of the solution S_b

The measurement of the pH of the aqueous solution S_b gives pH = 10,6.

- **0,5 2.1.** Write the reaction equation of the ammonia with water.
- **0,75 2.2.** Calculate the effective molar concentration of the hydroxide ions HO^- in the solution S_b .
- **0,5 2.3.** Calculate the final progress rate τ of this reaction.
- **0,5 2.4.** Check that the reaction quotient at equilibrium is $Q_{r,éq} = 1,65.10^{-5}$.
- **0,5 2.5.** Deduce the value of pK_A of the pair NH_4^+/NH_3 .


	3 NS 2	8E	العادية 2020–الموضوع لك العاه م الفيز بانية (خيار انجليزية)	الدورة سة مس	الامتحان الوطني الموحد للبكالوريا – - مادة: الفيزياء والكيمياء-شعبة العلوم التجري
7 \		C (
	1		udy of the electrochemical cell sil		
		-	t, we propose studying an electroch ochemical cell consists of :	етіса	ni cen.
	1		ode of chromium (Cr) immersed in t	the	
			lution of the chromium (III) nitrate		
	$Cr_{(aq)}^{3+}$ +	- 3N	$O_{3(aq)}^{-};$		Ag - Cr
	-an ele	ctro	de of silver (Ag) immersed in the		
	1 -		lution of the silver nitrate		$Cr_{(aq)}^{3+} + 3NO_{3(aq)}^{-}$
	$Ag^+_{(aq)}$	+NC	$D_{3(aq)}$;		$Ag^+_{(aq)} + NO^{3(aq)}$
			lge connects these two solutions.	ا ب	Figure 2
			resistor and an ammeter are connec		e 2). The ammeter indicates the flow of an
	•		rent of constant intensity through the	Ū	
	After a	ı per	iod of time Δt of the functioning of	the el	ectrochemical cell, we observe a deposit on
	the silv	ver e	electrode but the chromium electrod	e deci	reases in mass.
	Give	n :			
	 The 	mo	lar mass of the chromium is M(Cr)	= 52 g	g.mol ⁻¹ ;
	• 1F=	965	500 C.mol^{-1} .		
0,5	1. Det	ermi	ine the anode of this electrochemica	al cell	. Justify.
0,5	-		ent the cell diagram of this electroch		
0,75			_	overal	l equation during the functioning of this
~ -	i		nical cell.		
0,5					by this electrochemical cell during the period
		ΞΔι Ι	is $Q = 5,79C$, calculate the change i		
	Propo	σati	on of waves	CISE	2 (3 points)
	-	0		of the	question and write the letter of the correct
	-		om the suggested statements.		1
0,25	1. Dur	ing t	he propagation of a mechanical wa	ve the	ere is
		tra	nsport of matter and no transfer	С	no transport of matter and no transfer of
	Α	of	energy.	U	energy.
	В		transport of matter and transfer	D	transport of matter and transfer of energy.
			energy.		
0,25	2. A m		anical wave is called transverse whe	en	
			e direction of the disturbance is	a	the direction of the disturbance is
	A		e same as the direction of the	С	perpendicular to the direction of the
	B		opagation.	D	propagation.
0,25	i L		propagates in the vacuum. I wave is	D	the propation is done without damping.
0,43	A	-	electromagnetic wave.	С	a longitudinal mechanical wave.
	B		ansverse mechanical wave.	D	a wave that travels in vacuum.
		u (
	1				

صفحة	4 NS 2	8E	لعدية 2020-الموضوع	- الدورةال	الموحد للبكالوريا -	الامتحان الوطني	
7			ك العلوم الفيزيانية (خيار إنجليزية)	يبية مسل	المعبة العلوم التجر	: الفيزياء والكيمياء	- مادة
0,25	!		iffraction of a wave,		there is a share	~~	area a d
	A	there is	s a change in the frequency.	С		ge in the wave a langes in the free	1
	В	there is	s a change in the wavelength.	D		n and in the way	
0,25	1		a point M from the surface of		-		propagates.
			peets the same motion of the s p between the elongation of M			•	
		A	$y_{\rm M}(t) = y_{\rm s}(t+\tau)$		_	$\frac{y_s(t+2\tau)}{y_s(t+2\tau)}$	
	-	В	$y_{\rm M}(t) = y_{\rm s}(t - 2\tau)$	D		$y_{s}(t-\tau)$	
			S of a vibrator produces a sinu	usoidal	progressive wa	ve of frequency	N across the
	1	e of the w	vater. agates without damping and w	vithout 1	eflection with a	a wave	
	speed v	v = 0,251	$\mathbf{m}.\mathbf{s}^{-1}.$				
	The fig		he right represents the aspect of	of the su	urface of the wa	iter at an	
	The cir	cular rip	pples illustrates crests.				
0,5		xploiting velength	g the figure on the right, determ λ .	nine the	e value of		
0,5	2-Find	the valu	e of the frequency N of this w				
0,75			a point M far from S by $d = 5c$ ns of S and M.	cm. Cal	culate the time	delay τ	1cm
		in motio			· · · · · · · · · · · · · · · · · · ·		-
	Disinte	oration	EXER of the polonium 210	CISE 3	(2,5 points)		
	1	0	is a rare radioactive metal which	ch was	discovered by t	he scientist Pie	rre Curie in
	1898.			o. ()			
	1		ymbol Po and atomic number a nucleus of polonium 210				• •
	i	-particle		o deedy			
	Given	-					
			e of the polonium 210 is $t_{1/2} = 1$				
0,5	1		MeV/c^2 ; 1 u = 1,60 nation of the disintegration of the		-		E(MeV)
0,5	1	ining A	•	ine pore			
		-	energy diagram on the right, c			1,971820.10 ⁵	126n + 84p
0,5	I		released (produced) E_{pro} durin	g the di	sintegration		
0,5	-		n 210 nucleus. Times (kg) the mass defect Am	n of the	polonium	1,955372.10 ⁵	²¹⁰ ₈₄ Po
0,5	2-2- in kilogrammes (kg), the mass defect Δm of the polonium 210 nucleus.			r	1,955318.10 ⁵	$^{A}_{Z}Pb + ^{4}_{2}He$	
0,5	3- Calculate in s ⁻¹ the decay constant λ of the polonium 210.						
0,5	•	=0, the ac .5.10 ¹¹ B	ctivity of a sample of Poloniun	n 210 n	uclei is		
			us, the instant of time t ₁ wher	n the ac	tivity of this sa	mple will be a ₁	$= 3,7.10^4$ Bq.
	1 1 1						
	1 1 1						


7

0,5

EXERCISE 4 (5 points)

0,5 2-By exploiting curves (C1) and (C2) in their both steady states, determine the value of r.
0,5 3- Check that L = 1H.

صفحة	الامتحان الوطني الموحد للبكالوريا – الدورة العادية 2020 – الموضوع 7 NS 28E
7	(\vec{i}_{2} , i
0,5	velocity of G at an instant t and k is a positive constant. The upthrust force (Archimedes's force) is negligible to other forces. Given: - The strength of the gravitational field is $g = 10 \text{ ms}^{-2}$; - $m=2,5.10^{-2} \text{ kg}$. 1- By applying Newton's second law on the ball, show that the differential equation verified by the velocity v of the center inertia G is $\frac{dv}{dt} + \frac{k}{m} \text{ v} = \text{g}$. 1,2
0,25	dt m 2- Find out the expression of the terminal velocity v_1 of $0,9$ G in terms of g, m and k.
0,25 0,5	3- The curve in figure 2 represents the evolution of the velocity v of the center of inertia G of the ball. Determine graphically the value of v_{ℓ} . 4- Verify, in the international units, that the differential equation of the motion of G is written as: $\frac{dv}{dt} = 10-6,67 v$
0,5 0,5	at 5- By using Euler's method and the data of the following table, calculate: 5.1.the acceleration a_1 at the instant t_1 . 5.2.the velocity v_3 at the instant t_3 knowing that the step of calculating is $\Delta t = 0,015$ s. $\frac{t}{t} = \frac{v(m s^{-1})}{a(m s^{-2})}$

t	v (m.s ⁻¹)	a (m.s ⁻²)
/	/	/
t_1	0,150	a ₁ =
t ₂	0,285	8,10
t ₃	v ₃ =	/

С

الصفحة 1 3 *	الامتحان الوطني الموحد للبكالوريا المسالك الدولية الدورة الاستدراكية 2020 - عناصر الإجابة –		۲۵۵۲۵۹ ۲۱۱۵۲۲۵ ۲۵۵۵۹۲۱ ۱۵۵۲۵۶ ۸ ۵۵۵۶۹۲۸ میکند ۲۵۵۵۶ ۸ ۵۵۵۴۵۸ میکند ۲۵۵۵۶۸ ۱ للتقویم والامتحانات	المبلكة المغربية ورارة التربية الونمنية والتحوين الممنس والتعليم العالم وبالبحث العلم المركز الوطني
	SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS			
مدة الإنجاز 3	الفيزياء والكيمياء			المادة
المعامل	بة العلوم التجريبية مسلك العلوم الفيزيائية (خيار إنجليزية) المعامل			الشعبة أو المسلك

		Exercise 1		
Que	stion	Answers	Marking scale	Question reference in the framework
	I-1.	$CH_{3}COO^{-}_{(aq)} \ + \ H_{2}O_{(\ell)} \ \rightleftarrows \ CH_{3}COOH_{(aq)} \ + HO^{-}_{(aq)}$	0,5	
	2.	Method $[HO_{(aq)}^{-}] = 7,9.10^{-7} \text{ mol.L}^{-1}$	0,25 0,25	
	3.	$\tau = 7,9.10^{-2}$ % Limited reaction	0,25 0,25	 Write the equation of the acid-base reaction and identify the two pairs involved. Write and use the expression of the acid dissociation
	4.	$Q_{r,éq} = \frac{C . \tau^2}{1 - \tau}$ $Q_{r,éq} = 6,24.10^{-10}$	0,25 0,25	 constant K_A associated with the reaction of an acid with water. Know the relationship pK_A= -logK_A.
	5.	Check the value of pK_{A1}	0,5	• Determine the pH value of aqueous solution based on the
Part 1	II-1.	$\text{HCOOH}_{(\text{aq})} + \text{CH}_{3}\text{COO}_{(\text{aq})}^{-} \rightleftharpoons \text{HCOO}_{(\text{aq})}^{-} + \text{CH}_{3}\text{COOH}_{(\text{aq})}$	0,5	 molar concentration of ions H₃O⁺ or HO⁻. Define the final progress rate of a reaction, and determine it using experimental data.
1	2.	$K = \frac{K_{A2}}{K_{A1}}$ $K = 10$	0,25 0,25	 Determine the equilibrium constant associated to the equation of acid-base reaction using the acid dissociation constants of existing pairs. Calculate the value of the quotient of reaction Q_r of a
	3.	Q _{r,i} = 1	0,5	chemical system in given state.Determine the direction of spontaneous evolution of a
	4.	 the reaction evolves in the direction of producing the ethanoic acid justification 	0,25 0,25	chemical system.
	5.	Method $pH = 4,27$	0,25 0,25	
	1.	\ominus Al _(s) / Al ³⁺ _(aq) / /Zn ²⁺ _(aq) / Zn _(s) \oplus	0,5	• Draw a cell diagram / diagram of an electrochemical cell
Part 2	2.	At the anode : $Al_{(s)} \rightleftharpoons Al_{(aq)}^{3+} + 3e^{-}$ At the cathode : $Zn_{(aq)}^{2+} + 2e^{-} \rightleftharpoons Zn_{(s)}$ Overall equation : $2Al_{(s)} + 3Zn_{(aq)}^{2+} \rightarrow 3Zn_{(s)} + 2Al_{(aq)}^{3+}$	3x0,25	 (battery) Interpret the functioning of a battery based on: the direction of electric current flow, the electromotive force (emf), the electrode reactions, the polarity of electrodes or the movement of charge carriers. Write the half-equation that occurred in each electrode (use double arrows) and write the overall equation of the reaction during the battery functioning (use one arrow). Establish the relationship between the amount of substance of chemical specie produced or consumed, the current
	3.	Method $\left[Zn_{(aq)}^{2+} \right]_{r} = 8,7.10^{-2} \text{ mol.L}^{-1}$	0,5 0,25	of chemical specie produced of consumed, the current intensity and the operating duration of a battery. Use this relationship to determine other quantities (quantity of charge, progress of the reaction, change of the mass).

	Exercise 2 (2,75 points)				
Question	Answers	Marking scale	Question reference in the framework		
1.1.	А	0,5	• Define a mechanical wave and its wave speed.		
1.2.	В	0,5	Define a dispersive medium.		
2.1.	explanation	0,5			
2.2.	$\mathbf{d}_1 = \frac{\mathbf{v}.\mathbf{t}_1}{2}$	0,5	Exploit the relationship between time delay, distance and wave speed.Exploit experimental documents and data in order to determine:		
2.3.	$\mathbf{d}_2 = \frac{\mathbf{v}.(\mathbf{t}_2 - \mathbf{t}_1)}{2}$	0,5	distance;time delay.		
2.01	$d_2 = 2$ $d_2 = 6,16 \mathrm{cm}$	0,25			

	Exercise 3 (2,5 points)				
Question	Answers	Marking scale	Question reference in the framework		
1.	92 protons and 142 neutrons	0,5			
2.	Method $E_{\ell} \approx 1731, 22 \text{MeV}$	0,25 0,25	• Know the meaning (significance) of the symbol ${}_{Z}^{A}X$ and give the corresponding composition of the nucleus.		
3.	${}^{234}_{92}\text{U} \rightarrow {}^{230}_{90}\text{Th} + {}^{4}_{2}\text{He}$ the type is α	0,25 0,25	 Define and calculate the mass defect and the binding energy. Write the equation of a nuclear reaction by applying the two conservation laws. 		
4.1.	Method N($^{230}_{90}$ Th) = N ₀ (1-e ^{-λt})	0,25 0,25	 Recognize the type of radioactivity using the equation of a nuclear reaction. Know and exploit the law of the radioactive decay, and exploit 		
4.2.	Method	0,25	its curve.		
4.3.	$r_1 \approx 0,76$	0,25			

	Exerci	se 4 (5,25 pc	pints)
Question	Answers	Marking scale	Question reference in the framework
1.1.	Method	0,5	• Know and exploit the relationship $i = \frac{dq}{dt}$ for a capacitor in
1.2.	Check the value of C	0,5	 <i>dt</i> receiver convention. Know and exploit the relationship q = C.u. Determine the capacitance of a capacitor graphically or by calculation.
	Resistance R ₁ =0 R ₂ =3900		• Define and recognize the undamped (periodic), the
2.1	Curve C1 C2 State underdamped overdamp	4x0,125	underdamped (pseudo-periodic) and the overdamped (non- periodic) states.
2.2	Method	0,5	• Recognize and represent the variation curves of the voltage between capacitor terminals in terms of time for the three states mentioned above; and exploit them.
2.3	Method	0,5	• Find out the differential equation for the voltage between the capacitor terminals or for its charge $q(t)$ in the damping case.
	t(ms) 0 13 20		• Exploit experimental documents in order to:
3.1.	Et(mJ) 0,64 0,36 0,24	3x0,25	• recognize the observed voltages;
3.2.	Dissipation of the energy by Joule effect	0,5	 • recognize the damping states; • highlight the influence of R, L and C on the oscillation
3.3.	Method $i_1 = 4,47.10^{-2} \text{ A}$	0,25 0,25	 phenomenon; determine the values of the period and the natural period. Know and exploit the natural period expression. Explain energetically the three regimes. Know and exploit the energetic diagrams. Know and exploit the expression of the total energy in the circuit. Know and exploit the expression of the magnetic energy stored in a inductor.
4.1	The role is to select the modulated wave	0,25	• Know the selective role of the LC (bung circuit) for the
4.2	$C_0 = \frac{1}{4\pi^2 f^2 L}$ $C_0 \approx 7,7 pF$	0,5 0,25	modulated voltage.Recognize the essential components required to assemble an AM radio, and their roles in the demodulation.

Exercise 5 (2,5 points)				
Question	Answers	Marking scale	Question reference in the framework	
1.1.	Method	0,5		
1.2.	Method	0,25	• Apply Newton's second law to find out the differential equation of	
1.3.	$F = m.a_G$ F = 4 N	0,25 0,25	a system's centre of inertia motion in horizontal or inclined plane and determine the characteristics of kinetic and dynamic quantities of motion.	
1.4.	Method	0,25	• Exploit the velocity-time graph: $v_G = f(t)$.	
2.1.	Method	0,5	• Know and exploit the characteristics of the uniformly accelerated	
2.2.	Method $V = 3 \text{ m.s}^{-1}$	0,25 0,25	 straight line motion and its parametric equations (t is the parameter). Apply Newton's second law to determine the kinetic quantities ¹⁰¹_{V_G} and ¹⁰¹_{a_G} and dynamic quantities and exploit them. 	
·/·		- I		