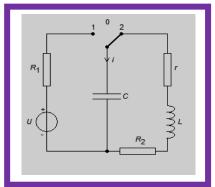
الفيزيـــــاء

التمرين 1


لدراسة التذبذبات الحرة ننجز التركيب التالي الممثل جانبه

نضع قاطع التيار في الموضع 1 لشحن مكثف سعته $C=40\mu$ بواسطة مولد مؤمثل قوته الكهرمحركة E=40 . نؤرجح عند لحظة E=40 قاطع التيار إلى الموضع (2) لتفريغه عبر وشيعة معامل تحريضها E=40 ومقاومتها الداخلية E=40 ونعاين تطور التوتر E=40 بين مربطي المكثف، فنحصل

 $\ddot{R}_2 = 10\Omega$ على المنحنى الممثل في الشكل (2). نعطي الممثل في الشكل

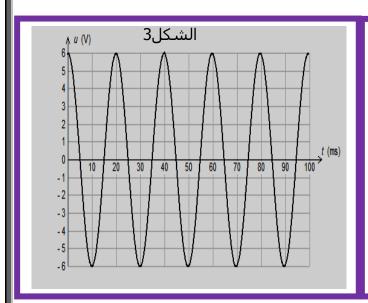
- حدد قيمة شبه الدور T.
- $U_{\rm C}({\rm t})$ يين كيفية ربط راسم التذبذب لمعاينة التوتر 3.
- $t_0 = 0$ أحسب الطاقة القصوية المخزونة في المكثف عند 3.
 - 5. أحسب معامل التحريض اللوشيعة

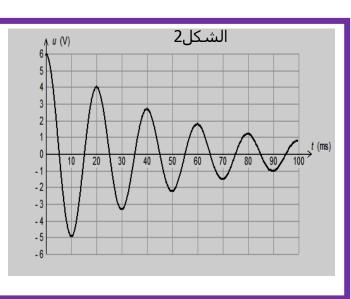
6. أثبت المعادلة التفاضلية التي عطققها التوتر $U_{\mathbb{C}}(\mathsf{t})$ ثم حدد المقدار المسؤول على الخمود

7. لصيانة التذبذبات نركب على التوالي مع الوشيعة مولدا يزود الدارة بتوتر تعبيره $\mathrm{U}=15.\mathrm{i}$ ونعاين تطور التوتر U_C بين مربطي المكثف، فنحصل على المنحنى الممثل في الشـكل S والدي يمثل تغيرات التوتر بين مربطي المكثف

 $U_{\rm C}({
m t})$ أتبث المعادلة التفاضلية التي عطقها التوتر 1-7.

2-7. إستنتج قيمة المقاومة r التي تمكن من الحصول على تذبذبات جيبية

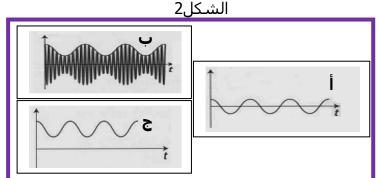

بدلالة الزمن i(t) عبر عن $U_{C}(t) = U_{m}\cos(\frac{2\pi}{T_{0}}t + \varphi)$ بدلالة الزمن 3-7.


t=25ms و $U_{\rm C}(t)$ عند اللجظتين t=20ms و i(t). حدد قيمة

 U_m و $\mathrm{\phi}$ ثم استنتج قیم کل من $\mathrm{U}_0(0)$ و i(0).5-7

6-7. إعطُ تَعْبِيرُ الطَاقَّةِ الكُلِيةِ المُحْزِونَةُ فِي الدَّارِةِ بِدُلْالَةِ الزمن

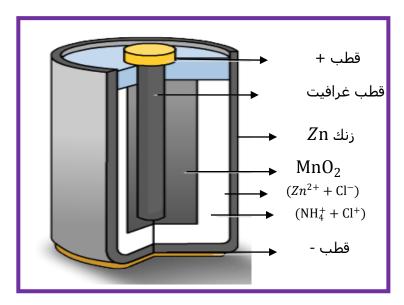
7-7. باستغلال تعبير الطاقة الكلية حدد المدة الزمنية التي تصبح فيها الطاقة المخزونة في الوشيعة تساوي ضعف الطاقة المخزونة في المكثف



نطبق عند مدخلي الدارة المنجزة للجداء AD633 توترين جيبين $u_1(\mathsf{t})$ توتر الموجة الحاملة و تعبيره: s(t) توتر الإشارة المضمنة فنحصل على توتر $u_2(t)$

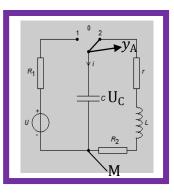
 $s(t) = k[0.5.\cos(6.28.10^3t) + 0.7].\cos(6.28.10^4t)$

- 1. حدد f_{s} تردد الإشارة المضمِّنة و f_{p} تردد
 - ي أعط تعبير وسع $s(\mathsf{t})$ التوتر المضمَن $s(\mathsf{t})$
- 3. إستنتج قيمة وسع $u_2(\mathsf{t})$ التوتر المضمِّن و قيمة المركبة المستمرة
 - 4. أحسب قيمة نسبة التضمين مادا تستنتج
- 5. لإزالة التضمين نستعمل التركيب الممثل في الشكل 1 المكون من الجزئين a و b
 - 5 1. ماهو دور الجزئين a و b
- s(t) و مكتف سعته C من أجل كشف غلاف ($R=100\Omega$ و مكتف سعته C من أجل كشف غلاف حدد قيم سعة المكثف التي تمكن من الحصول على كشف غلاف جيد
- 5 3. من بين منحنيات الشكل 2 حدد معللا جوابك المنحنى الذي يوافق كل توتر من بين التوترات x(t) و y(t) و z(t) التالية


الشكل1 x(t)y(t)

الكيمياء

يعد عمود ليكلانشي أصل الأعمدة الملحية و القلائية . و هو عمود كهربائي أسطواني الشكل أنظر الشكل أسفله.يتكون العمود


- من إلكترود من الزنك كتلته m(Zn)=2g يوجد في تماس مع محلول لكلورور الزنك . $(Zn^{2+}+Cl^{-})$
- إلكترود الغرافيت محاط بخليط مكون من ثنائي أوكسيد المنغنيز MnO_2 كتلته $\mathrm{m(MnO}_2)=5\mathrm{g}$

- ننمدج التفاعل الحاصل خلال اشتغال عمود ليكلانشي $Zn + 2MnO_2 + 2H^+ \mapsto Zn^{2+} + 2MnOOH$ بالمعادلة التالية:
 - 1. أكتب نصف المعادلة التي تحدث بجوار كل الكترود أثناء الإشتغال
 - 2. أعط التبيانة الاصطلاحية للعمود
 - x عبر عن $n(e^-)$ كمية مادة الإلكترونات المتبادلة بدلالة تقدم التفاعل $n(e^-)$
 - 4. أنشئ الجدول الوصفي وحدد المتفاعل المحد
 - 5. ما قيمة (e^-) كمية مادة الإلكترونات التي يمنحها العمود
 - 6. استنتج كمية الكهرباء القصوية التي يمكن أن يمنحها العمود
- 7. يستعمل العمود لتشغيل جهاز راديو حيث يزوده بتيار كهربائي شدته 15m حدد المدة الزمنية القصوية لاشتغال جهاز الراديو
 - 8. حدد كتلة الزنك المستهلكة عند تمام مدة الإشغال

1F=96500C. mol و M(Zn)=65,4g/mol و M(Mn)=54,9g/moL و M(0)=16g/mol

عناصر الإجابة

<u>تمرين1</u>

- 1. نظام شبه دوري
- T = 20ms قيمة شبه الدور
- 3. كيفية ربط راسم التذبذب أنظر الشكل جانبه
 - 4. الطاقة القصوية المخزونة في المكثف

$$E_c = 0.72. \, 10^{-4} J$$
 ت ع $E_c = \frac{1}{2} \, C. \, U_C^2$

5. قيمة معامل التحريض

L = 0.25H ت ع $L = \frac{T^2}{4\pi^2.C}$ و بالتالي $T = 2\pi\sqrt{LC}$ نعلم أن $T = 2\pi\sqrt{LC}$

6. المعادلة التفاضلية التي يحققها

 $U_{\rm C} + U_{\rm L} + U_{\rm R} = 0$. بتطبیق قانون إضافیة التوترات نجد

$$U_{C} + r.i + L\frac{di}{dt} + R_{2}.i = 0 \implies U_{C} + L\frac{di}{dt} + (R_{2} + r).i = 0$$

نعلم أن $i=\frac{di}{dt}=LC\frac{d^2U_C}{d^2t}$ و بالتالي $q=C.U_C$ و بالتالي $i=\frac{dq}{dt}$ و منه:

$$(R_2 + r) = R_T$$
 $ightharpoonup (R_2 + r) = R_T$ $ightharpoonup (R_2 + r) = R_T$

$$U_{\rm C}({\rm t})$$
المعادلة التفاضلية التي يحققها التوتر ${d^2 U_{\rm C}\over d^2 t}+{1\over LC}$ المعادلة التفاضلية التي يحققها التوتر ${dU_{\rm C}\over dt}=0$

المقدار المسؤل عن الخمود

1-7. الجزء $\frac{d^2 U_C}{d^2 t} + \frac{1}{LC} U_C$ له حل جبيا أن التغيرات تكون جيبية رياضيا أي الوسع يبقى ثابتا

 $\frac{(\mathrm{R_2+r})}{\mathrm{L}}.\frac{dU_c}{dt}$ اذن نستتج ان الجزء المسؤول على تناقض الوسع خلال الزمن أي الخمود

u=15.i صيانة التذبذبات المولد يزود الدارة توتر تعبيره 7

 ${
m U_C} + {
m U_L} + {
m U_R} = 15i$. بتطبيق قانون إضافية التوترات نجد: .1-7

: و بالتالي
$$U_C + r. i + L \frac{di}{dt} + R_2. i = 15i$$
 $\Longrightarrow U_C + L \frac{di}{dt} + (R_2 + r - 15). i = 0$

المكثف التي يحققها التوتر بين مربطي المكثف $\frac{d^2 U_C}{d^2 t} + \frac{1}{LC} U_C + \frac{(R_2 + r - 15)}{L} \cdot \frac{dU_C}{dt} = 0$

2-7. نحصل على المعادلة التفاضلية للدارة المثالية $\frac{d^2 U_C}{d^2 t} + \frac{1}{LC}$ ادا كان:

$$r=5\Omega$$
 . و منه نجد R $_2+r-15=0$

$$U_{\rm C}(t) = {\rm U_m cos}({2\pi\over {
m T}}t+\phi)$$
 حل المعادلة التفاضلية .3-7

$$i(t)=-$$
C. $U_m rac{2\Pi}{\Gamma_0} sin\left(rac{2\Pi}{\Gamma_0} t+ arphi
ight)$ ادن $i(t)=C rac{dU_C}{dt}$ تعبير i(t) في اللحظة نعلم أن

t = 25ms و t = 20ms عند اللجظتين $U_{\rm C}({\rm t})$ و i(t) قيمة 4-7

: t = 20ms عند اللحظة

i(20ms) = 0A التوتر بين مربطي المكثف قصوي $\frac{U_{\rm C}(20ms)}{U_{\rm C}(20ms)} = 6V$ ادن التيار الكهربائي يكون منعدم t = 25ms عند اللحظة

التوتر بين مربطي المكثف منعدم $U_{\rm C}(25ms)=0$ ادن التيار الكهربائي يكون قصوي ${\rm i}(25ms)=I_{max}={\rm C.}~U_m {2n\over T_c}=75{,}36mA$

\mathbf{U}_{m} و $\mathbf{\phi}$ ثم استنتج قیم کل من \mathbf{u}_{0} 0 و i(0).5-7

$$U_{\rm C}({\rm t})={\rm U_m}\cos({2\pi\over {
m T}}{
m t}+{
m \phi})$$
 و $i(t)=-{
m C.}\,U_m\,{2\pi\over {
m T_0}}\sin\left({2\pi\over {
m T_0}}{
m t}+{
m \phi}
ight)$ لدينا

$$\mathrm{i}(0)=0$$
 و $\mathrm{U}_{\mathbb{C}}(0)=U_{max}$ الشروط البدئية عند اللحظة $t=0$

لدينا الشروط البدئية
$$i(0)=-$$
C. $U_{m}rac{2\Pi}{\Gamma_{0}}sin(\phi)=0$ ومنه

$$sin(\varphi) = 0 \Longrightarrow \begin{cases} \varphi = 0 \\ \varphi = \pi \end{cases}$$

$$U_{\rm C}(0) = {
m U_{\rm m}}\cos(\phi) = U_{max}$$
 وبالتالي ${
m U_{\rm C}}(0) = U_{max} > 0$ و $U_{\rm C}(t) = {
m U_{\rm m}}\cos(\frac{2\pi}{{
m T}_0}{
m t} + \phi)$ نعلم أن

$$U_{\mathbb{C}}(\mathsf{t}) = \mathrm{U_m} \cos(\frac{2\Pi}{\mathrm{T}_0}\mathsf{t})$$
 وبالتالي فان $\varphi = 0$ وبالتالي فان $\cos(\varphi) > 0$

6-7. تعبير الطاقة الكهربائية المخزونة في الدارة

$$E_{T} = E_{m} + E_{c} = E_{T} = \frac{1}{2}Li^{2}(t) + \frac{1}{2}CU_{C}^{2}(t)$$

$E_{m}=2E_{c}$ التاريخ الدي تتحقق فيه العلاقة التالية .7-7

$$\mathrm{E_T} = rac{3.\mathrm{E}_m}{2}$$
 و منه فان $\mathrm{E_T} = \mathrm{E}_\mathrm{m} + rac{\mathrm{E}_m}{2}$ و بالتالي: $\mathrm{E_T} = \mathrm{E_m} + \mathrm{E_c}$

$${
m E}_{
m m}=rac{3}{4}L\left[-{
m C.}\,U_{m}\,rac{2\Pi}{{
m T}_{0}}\sin(rac{2\Pi}{{
m T}_{0}}{
m t})
ight]^{2}$$
 فعلم أن ${
m E}_{
m m}=rac{1}{2}Li^{2}(t)=rac{1}{2}L\left[-{
m C.}\,U_{m}\,rac{2\Pi}{{
m T}_{0}}\sin(rac{2\Pi}{{
m T}_{0}}{
m t})
ight]^{2}$ نعلم أن

ان الطاقة الكلية تنحفظ ومنه
$$\mathrm{E_T} = \mathrm{E_{cmax}} = rac{1}{2} \mathcal{C} U_{cmax}^2$$
 ومنه:

$$\frac{1}{2}CU_{cmax}^2 = \frac{3}{4}L\left[C.U_m\frac{2\pi}{T_0}\right]^2.\sin^2(\frac{2\pi}{T_0}t). \quad \text{eas} \quad \frac{1}{2}CU_{cmax}^2 = \frac{3}{4}L\left[-C.U_m\frac{2\pi}{T_0}\sin(\frac{2\pi}{T_0}t)\right]^2$$

$$t=3ms$$
 : ومنه $\sin^2\left(\frac{2\pi}{T_0}t\right)=\frac{2}{3}\Longrightarrow\sin\left(\frac{2\pi}{T_0}t\right)=\sqrt{\frac{2}{3}}$ و بالتالي نجد:

<u>تضمين الوسع</u>

6. حدد $f_{ m S}$ تردد الإشارة المضمِّنة و $f_{ m p}$ تردد الموجة الحاملة

 $s(t)=\mathrm{k}[0.5.\cos(6.28.10^3t)+0.7].\cos(6.28.10^4t)$ لدينا تعبير التوتر المضمِّن الحالة العامة نعلم أن تعبير التوتر في الحالة العامة

$$s(t) = k[U_{2max}.\cos(2\pi f_S t) + U_0]. U_{1max}\cos(2\pi f_p t)$$

$$f_p=10^4 Hz$$
 و $f_{
m S}=10^3 Hz$ بالمماثلة بين تعبير التوترين نجد:

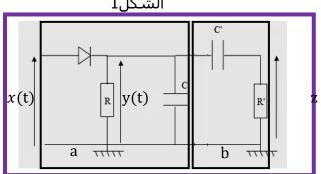
التوتر المضمّن $oldsymbol{s}(\mathbf{t})$ التوتر المضمّن

$$S_{max}(t) = k[0.5.\cos(6.28.10^3 t) + 0.7]$$
 من خلال تعبير التوتر:

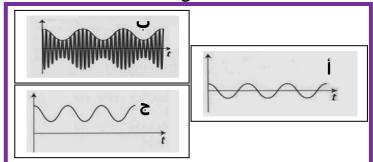
8. قيمة وسع $u_2(\mathsf{t})$ التوتر المضمِّن و قيمة المركبة المستمرة $u_2(\mathsf{t})$

$$U_0=0.7V$$
 من خلال تعبير التوتر المضمِّن نجد $U_{2max}=0.5V$ و

9. قيمة نسبة التضمين مادا تستنتج


نعلم أن
$$m < 1$$
 تضمين جيد $m = \frac{U_{2max}}{U_0} = \frac{0.5}{0.7} = 0.71$ تغلم أن

10.إزالة التضمين


 U_0 مرشح ممرر التوترات العالية لإزالة المركبة المستمرة b مرشح ممرر التوترات العالية لإزالة المركبة المستمرة a

<u>فرض رقم1 الدور 2</u>

الشكل1

الشكل2

قيم سعة المكثف التي تمكن من الحصول على كشف غلاف جيد

يكون كشف غلاف جيد ادا حققت ثابتة الزمن $au=R.\,C$ المتراجحة

$$\frac{1}{f_P} \ll R. C < \frac{1}{f_S} \implies 10^{-4} \ll R. C < 10^{-3} \implies \frac{10^{-4}}{R} \ll C < \frac{10^{-3}}{R}$$

$$10^{-6} \ll C < 10^{-3}$$

و بالتالي نجد:

3 5. التوتر الموافق لكل شكل

التوتر (x(t) من خلال الشكل 1 فهو يوافق بداية مرحلة إزالة التضمين اد يوافق الشكل ب التوتر التوتر $y(\mathsf{t})$ من خلال الشكل 1 فهو يوافق مرحلة كشف الغلاف ادن يوافق الشكل ج التوتر التوتر $z(\mathsf{t})$ من خلال الشكل 1 فهو يوافق مرحلة إزالة المركبة المستمرة إدن يوافق $z(\mathsf{t})$

الكيمياء

9. أكتب نصف المعادلة التي تحدث بجوار كل الكترود أثناء الإشتغال

 $Zn + 2MnO_2 + 2H^+ \mapsto Zn^{2+} + 2MnOOH$ المعادلة الحصيلة من خلال المعادلة الحصيلة يتحول فلز الزنك إلى أيون الزنك أي أُكسدة الزنك ادن بجوار الأنود لدينا:

$$\mathbf{Z}\mathbf{n} \Leftrightarrow \mathbf{Z}\mathbf{n}^{2+} + 2e^{-}$$

 $2MnO_2 + 2H^+ + 2e^- \Leftrightarrow 2MnOOH$ بجوار الكاتود الإختزال الكاتودي:

10.التبيانة الاصطلاحية للعمود

$$-Zn/Zn^{2+}$$
 \therefore MnO_2 /MnOOH/ C +

عمية مادة الإلكترونات المتبادلة $n(e^{-}).11$

 $n(e^{-}) = 2x$ من خلال معادلة الأكسدة نجد

12. الحدول الوصفي

Zn +	$2MnO_2 + 2H$	⁺ →	$Zn^{2+} + 2$	MnOOH	<u> </u>
ات المادة بالمــــــــــــــــــــــــــــــــــــ					کمیــ
n ₀ (Zn)	$n_0(MnO_2)$	وفير	0	0	t ₀
$n_0(\mathbf{Z}\mathbf{n}) - \mathbf{x}$	$n_0(\mathbf{MnO_2}) - 2x$		x	x	t
$n_0(\mathbf{Z}\mathbf{n}) - x_f$	$n_0(\mathbf{MnO_2}) - 2x_f$		x_f	x_f	t_{f}

:ومنه المحد:ومنه $n_0(Zn) - x_f = 0$

$$n_0(Zn) - x_{max} \implies x_{max} = n_0(Zn) = \frac{m(Zn)}{M(Zn)} = \frac{2}{65.4} = 0.03 \text{mol}$$

: مو المتفاعل المحد $m_0(MnO_2) - 2x_f$

$$n_0(MnO_2) - 2x_{max} \Rightarrow x_{max} = \frac{m(MnO_2)}{M} = 0.028 \text{mol}$$

 MnO_2 المتفاعل المحد هو:

العمود التي يمنحها العمود $n(e^-)$.13

 $m n(e^-)=0.056$ وبالتالي $m n(e^-)=2x_{max}$ عند نهاية التفاعل $m n(e^-)=2x$

14. كمية الكهرباء القصوية التي يمكن أن يمنحها العمود

$$Q = n(e^{-}). F = 5404C$$
 ومنه ت ع $Q = n(e^{-}). F$

15. حدد المدة الزمنية القصوية لاشتغال جهاز الراديو

$$\Delta t = \frac{\mathrm{n(e^-).F}}{I} = \frac{5404}{15.10^{-3}} = 36.\,10^4 s$$
 و بالتالي $Q = I.\,\Delta t$ و $Q = \mathrm{n(e^-).F}$ نعلم أن

16. كتلة الزنك المستهلكة عند تمام مدة الإشغال

من خلال الجدول الوصفي كمية المادة المتبقية
$$n_{\rm r}({\bf Zn})={\rm n}_0({\bf Zn})-{\rm x}_{\rm max}=0.03-0.028=2.\,10^{-3}{
m mol}$$

كمية المادة المستهلكة هي : $n({\bf Zn})={\bf x}_{\rm max}$: عمية المادة المستهلكة هي : $m({\bf Zn})={\bf M}({\bf Zn}).\,{\bf x}_{\rm max}=1,8g$