

CONVERTIR L'ÉNERGIE Aspect Physique

Aspect Physique

ENERGIE

4

CONVERTIR

Applications Cours:

^e STM Doc : élève

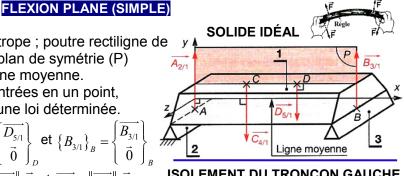
I- HYPOTHÈSE :

Solide idéal : matériau homogène ; isotrope ; poutre rectiligne de sections constantes avec plan de symétrie (P)

- ◆ Les actions extérieures sont ⊥ à la ligne moyenne.
- Les forces appliquées sont soit concentrées en un point, soit réparties suivant une loi déterminée.

$$\left\{A_{2/1}\right\}_{A} = \left\{\overrightarrow{\overline{A}_{2/1}}\right\}_{A} \; \cdot \; \left\{C_{4/1}\right\}_{C} = \left\{\overrightarrow{\overline{C}_{4/1}}\right\}_{C} \; \cdot \; \left\{D_{5/1}\right\}_{D} = \left\{\overrightarrow{\overline{D}_{5/1}}\right\}_{D} \; \text{et} \; \left\{B_{3/1}\right\}_{B} = \left\{\overrightarrow{\overline{B}_{3/1}}\right\}_{B} = \left\{\overrightarrow{\overline{D}_{5/1}}\right\}_{B} = \left\{\overrightarrow{\overline{D}_{5/$$

Avec
$$\overrightarrow{A_{2/1}} = \left\| \overrightarrow{A_{2/1}} \right\| \cdot \overrightarrow{y}$$
, $\overrightarrow{C_{4/1}} = -\left\| \overrightarrow{C_{4/1}} \right\| \cdot \overrightarrow{y}$, $\overrightarrow{D_{5/1}} = -\left\| \overrightarrow{D_{5/1}} \right\| \cdot \overrightarrow{y}$ et $\overrightarrow{B_{3/1}} = \left\| \overrightarrow{B_{3/1}} \right\| \cdot \overrightarrow{y}$



ISOLEMENT DU TRONÇON GAUCHE

II- DÉFINITION:

Une poutre est sollicitée à la flexion si le torseur associé aux forces de y cohésion de la partie droite (II) de la poutre sur la partie gauche (I), peut se réduire en G, barycentre de la section droite (II), à une résultante contenue dans le plan de symétrie et un moment perpendiculaire à ce dernier, tel que :

 $(Ty \neq 0 : flexion simple et si Ty = 0 : flexion pure)$

$$\left\{ Coh_{_{II/I}} \right\}_G = \begin{cases} 0 & 0 \\ T_{_{y}} & 0 \\ 0 & M_{_{fGz}} \end{cases}_G \text{ dans } R\left(G, \overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}\right) \text{ et } \begin{cases} Coh_{_{II/I}} \right\}_G = -\left\{F_{_{ext}}.\grave{a} \ gauche \ / \ I\right\}_G \\ = +\left\{F_{_{ext}}.\grave{a} \ droite \ / \ II\right\}_G \end{cases}$$

Section de la coupure (S) Résultante des forces de cohésion de (II)/(I)

III- CONTRAINTES NORMALES:

Lorsque la poutre fléchit, la section droite plane (S₂), par exemple, pivote d'un angle $\Delta \varphi$ autour de l'axe (G_2, \vec{z}) perpendiculaire au plan de symétrie. On constate que :

- ◆ Les fibres contenues dans le plan passant par les barycentres G des sections (S₁) ne changent pas de longueur, les contraintes $\sigma_{\scriptscriptstyle M}$ sont donc nulles en ces points.
- Les autres fibres s'allongent ou se raccourcissent. Les contraintes normales engendrées sont proportionnelles à l'ordonnée qui les séparent du plan des fibres neutres, d'où: $\sigma_M = -E \cdot \theta \cdot y$

 $\sigma_{\scriptscriptstyle M}$: contrainte normale au point M due à la flexion (MPa).

E: module d'élasticité longitudinal (d'Young) (MPa).

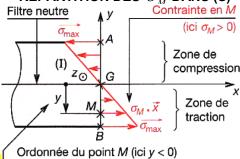
y : ordonnée du point *M* / au plan de la fibre neutre (mm).

 θ : angle unitaire de flexion (rad/mm) avec : $\theta = \frac{\Delta \varphi}{\Delta x}$

(S₂) avant Ligne moyenne déformation après déformation Section (S_1) (S'2) après de référence déformation

ANGLE UNITAIRE

RÉPARTITION DES $\sigma_{\scriptscriptstyle M}$ DANS (S)



IV- VALEURS DES CONTRAINTES NORMALES:

En un point quelconque M, de la section droite, on a : $\sigma_M = -\frac{M_{fGz}}{I_{Gz}} \cdot (\pm y)$

 $\sigma_{\scriptscriptstyle M}$: contrainte normale en M due à la flexion (MPa). M_{fGz} : moment de flexion selon (G, \vec{z}) dans (S) (N .mm).

 I_{G_z} : moment quadratique de la section droite (S) / à (G, \vec{z}) (mm⁴).

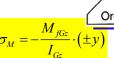
y: ordonnée du point M dans $R(G, \vec{x}, \vec{y}, \vec{z})$ (mm).

En un point M, le plus éloigné de (G, \vec{z}) , on écrit que :

$$\sigma_{M \max i} = -\frac{M_{fGz \max i}}{I_{Cz}} \cdot (\pm y_{\max i})$$

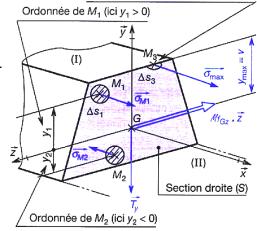
 $\sigma_{M \max i} = -\frac{M_{fGz \max i}}{I_{Gz}} \cdot \left(\pm y_{\max i}\right)$ $y_{\max i} = v$: ordonnée du point le plus éloigné de (G, \vec{z}) (mm).

 $I_{Gz} = I_{Gz}$: module de flexion de la section droite (S) (mm³).



CONTRAINTES NORMALES

Point le plus éloigné de l'axe (G, \overline{z})



FONCTION CONVERTIR L'ENERGIE

Aspect Physique **Applications**

Doc: élève

V- CONDITION DE RÉSISTANCE :

Pour des raisons de sécurité, la contrainte normale due à la flexion doit reste inférieur à la résistance pratique à l'extension. On défini R_{pe} par le quotient de la résistance élastique à l'extension R_{e} par le coefficient de sécurité " s "

$$\left|\sigma\right|_{\max i} = \frac{\left|M_{fGz}\right|_{\max i}}{\frac{I_{Gz}}{\left|y\right|_{\max i}}} \le R_{pe} = \frac{R_{e}}{s}$$

 R_{pe} . résistance pratique à l'extension en (Mpa). R_e : résistance élastique à l'extension en (Mpa). s : coefficient de sécurité (sans unité).

VI- SOLIDE RÉEL:

Les poutres présentent souvent de brusques variations de sections. Dans les zones proches de ces variations, les formules précédentes ne s'appliquent plus La répartition des contraintes n'est plus linéaire.

 $\sigma_{\it eff \, max \, i}$: contrainte maximale effective (MPa).

 $\sigma_{th\acute{e}}$: contrainte théorique sans concentration (MPa).

 K_f : coefficient de concentration de contrainte relatif à la flexion, déterminé par tableaux ou abaques.

If y a concentration de contrainte. $\sigma_{eff} = K_f \cdot \sigma_{th\acute{e}}$

$$\left|\sigma_{\mathit{eff}}\right|_{\max i} = K_f \cdot \left|\sigma_{\mathit{th\'e}}\right|$$

VII- EFFORTS INTÉRIEURS : (Efforts tranchants et moments fléchissants) :

Dans le cas de la flexion, les efforts intérieurs dans n'importe qu'elles section droite se réduisent à un effort tranchant T_v (perpendiculaire à la ligne moyenne) et à un moment fléchissant M_{fGz} (perpendiculaire à la ligne moyenne et à T_v).

* REMARQUE : La valeur des efforts tranchants et des moments fléchissant varie avec la position "x" de la coupure.

Les diagrammes des T_v (effort tranchant) et des M_{fGz} (moment fléchissant) graphes mathématiques permettent de décrire les variations de ces deux grandeurs et ainsi, repérer les maximums qui seront utilisés lors des calculs des contraintes.

Ex 1 - Soit une poutre 1 modélisée par sa ligne movenne AB. le bâti supporte la poutre en A et B.

- Calculer la réaction en A ; la réaction en B ;
- Calculer l'effort tranchant T_y; le moment fléchissant M_{fGz}.
- 3 Tracer le diagramme de T_v et de M_{fGz}. Application numérique : La réaction en C égale 200 daN;

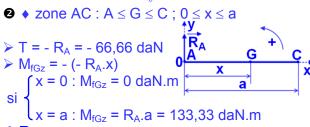
La distance a = 2 m; La distance $\ell = 3 \text{ m}$.

RÉPONSE : PFS :

$$\begin{split} & \sum \overrightarrow{F}_{ext} = \overrightarrow{R}_A + \overrightarrow{R}_C + \overrightarrow{R}_B = \overrightarrow{0} \\ & \operatorname{Pr} oj / oy : R_A - R_C + R_B = 0 \\ & \sum \overrightarrow{M_A(\overrightarrow{F}_{ext})} = \overrightarrow{M_A(\overrightarrow{R}_A)} + \overrightarrow{M_A(\overrightarrow{R}_C)} + \overrightarrow{M_A(\overrightarrow{R}_B)} = \overrightarrow{0} \\ & \operatorname{Pr} oj / oz : 0 - R_C.a + R_B.\ell = 0 \end{split}$$

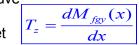
$$\triangleright R_B = \frac{R_C.a}{\ell} = 133,33 daN$$

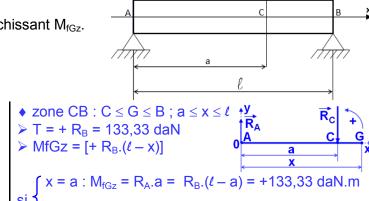
$$ho R_A = R_C - R_B = R_C (1 - \frac{a}{\ell}) = 66,66 daN$$

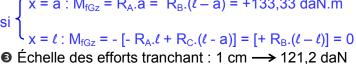


REMARQUE: on trouve

$$T_{y} = -\frac{dM_{fgz}(x)}{dx}$$







T=-66,66 daN

Échelle des moments fléchissant : 1 cm→ 55,09 daN.m $M_{fGz} = 133,33 \text{ daN.m}$ MfGz