EXEMPLES D'ACTIONS MÉCANIQUES

I-Exemples d'actions mécaniques :

1-Notion d'actions mécaniques :

Lorsqu'un corps agit sur un autre corps on parle d'une action mécanique.

Une action mécanique peut :

- ✓ Mettre en mouvement un objet
- ✓ Maintenir en équilibre un objet
- ✓ Déformer un objet

2-Modélisations d'une action mécanique :

Une action mécanique se modélise par un vecteur force noté \vec{F} dont les caractéristiques sont les suivantes :

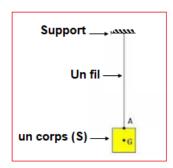
- ✓ Un point d'application
- ✓ Une direction appelée droite d'action
- ✓ Un sens
- ✓ Une valeur appelée intensité dont l'unité est le Newton (noté N)

II-Classification d'actions mécaniques

1-Action de contact :

1–1–Définition :

L'action mécanique de contact nécessite un contact entre le corps qui exerce et celui qui subit l'action.

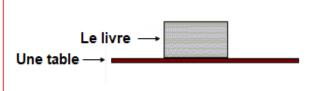

Exemple: l'action du fil sur le corps S

1-2-Action de contact localisée :

L'action mécanique est dite de contact localisée si elle s'exerce sur une petite surface qu'on peut considérer comme un point.

Exemple:

Le contact entre le fil et le corps S se fait en un point A : il s'agit d'un contact localisé.



1-3-Action de contact réparti :

L'action mécanique est dite de contact réparti si elle s'exerce sur la totalité d'une surface S.

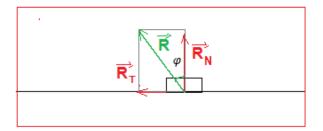
Exemple:

Le contact entre le livre et la table se fait sur la totalité d'une surface c'est un contact réparti.

Remarque:

L'action de la table sur le livre est la **résultante** de toutes les forces de contact exercée par la table **en chaque point** de la surface du livre.

L'action de la table se modélise d'une force appliquée au centre de la surface de contact et appelée : réaction de la table notée \vec{R} .


1-4-Réaction du plan sur un corps :

a- Cas de contact sans frottement :

Le contact se fait **sans frottement** si la direction de la réaction \vec{R} est **perpendiculaire** à la surface de contact (voir tableau en dessous).

b- Cas de contact avec frottement :

La direction de la réaction \vec{R} est inclinée si le contact se fait avec frottement, on décompose \vec{R} en forces :

deux

 \overrightarrow{R}_N : la composante normale qui s'oppose à l'enfoncement du corps dans le support.

 \vec{R}_T : la composante tangentielle ou force du frottement notée \vec{f} .

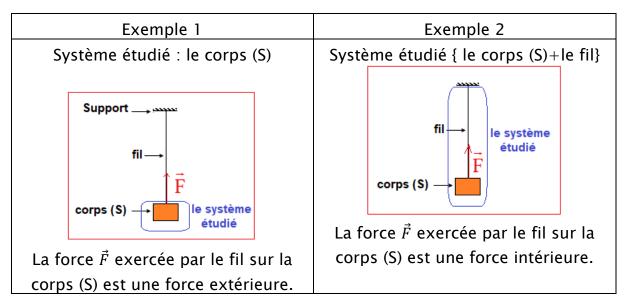
$$\vec{R} = \vec{R}_N + \vec{R}_T \qquad R = \sqrt{R_N^2 + R_T^2}$$

On appelle coefficient de frottement : $k = tan\varphi = \frac{R_T}{R_N}$

2-Actions mécaniques à distance :

2-1-Définition:

L'action mécanique est dite à distance s'elle s'exerce sans aucun contact entre le corps qui exerce l'action et celui qui l'a subi.


2-1-Exemples:

- Le poids du corps
- Les forces électriques
- Les forces magnétiques

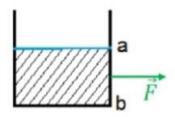
3-Les forces extérieures et forces intérieures :

Les forces extérieures : ce sont toutes les forces exercées par l'extérieur sur le système.

<u>Les forces intérieures</u>: ce sont toutes les forces exercées par une partie du système sur une autre partie du système.

III-La force pressante

Une force pressante est une force de contact répartie, exercée par le solide ou un fluide sur la surface d'un objet en contact avec lui.


Caractéristique de la force pressante \vec{F} :

Point d'application : centre de la surface pressée

❖ Direction : perpendiculaire à la paroi

Sens : orienté vers l'extérieure de la paroi

❖ Valeur : F est en N

Par définition la pression P d'un fluide est donnée par la relation :

$$P = \frac{F}{S} \text{ avec: } \begin{cases} F: Force \ pressante \ en \ Newton \ (N) \\ S: Aire \ de \ la \ surface \ plane \ en \ (m^2) \\ P: pression \ en \ Pascal \ (Pa) \end{cases}$$

Unité légale de la pression :

- Par définition l'unité l'égale de la pression est la pascal de symbole Pa. Le Pascal est la pression exercée par une force pressante de 1N sur une surface plane de $1\,m^2$.

- On emploie couramment d'autres unités :

ightharpoonup Le bar : $1 \, bar = 10^5 \, Pa$

 \triangleright L'hectopascal : $1hPa = 10^2 Pa = 1mbar$

ightharpoonup L'atmosphère : $1atm = 1,013 \times 10^5 Pa = 1,013 bar$

ightharpoonup Cm de mercure : 76 cm – Hg = 101325 Pa

Remarque:

La pression atmosphérique est la pression de l'aire qui nous entoure.

Sa valeur dans les condition normale est :

$$1013 \ hPa = 1,013 \times 10^{5} \ Pa = 1,013 \ bar$$