I. Rappel: symétrie axiale, symétrie centrale et translation

1. Définitions

- ☑ Une transformation T du plan, est une relation qui à tout point M du plan, associe un unique point M'. On écrit T(M) = M'
- lacksquare On dit qu'un point M est invariant par une transformation T si T(M) = M

2. La symétrie centrale

Définition:

Soit O un point du plan

La transformation qui a tout point M du plan, associe un unique point M' tel que O soit le milieu de M' est appelé : Symétrie centrale de centre O . On note S_O

Remarque:

Le point \mathcal{O} est le seule point invariant par la symétrie de centre \mathcal{O}

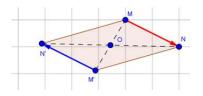
Propriétés:

- $S_O(M) = M'$ si et seulement si $\overrightarrow{OM'} = -\overrightarrow{OM}$
- Si $S_o(A) = A'$ et $S_o(B) = B'$ alors le quadrilatère ABA'B' est un parallélogramme
- La symétrie centrale a un seul point invariant, c'est son centre.



Propriété caractéristique de la symétrie centrale: Théorème:

Une transformation du plan T est une symétrie central de centre O si et seulement si pour tous les points M et N du plan on a: $\overrightarrow{M'N'} = -\overrightarrow{MN}$ avec T(M) = M' et T(N) = N'



3. La symétrie orthogonale ou réflexion

Définition:

Soit (Δ) une droite du plan

La transformation qui a tout point M du plan, associe un unique point M' tel que (Δ) soit la médiatrice de [MM] est appelé : Symétrie orthogonale ou Réflexion d'axe (Δ) . On note $S_{(\Delta)}$

(Δ)

Remarque:

Les points de la droite (Δ) sont invariants par la symétrie orthogonale d'axe (Δ)

Propriétés:

- $S_{(\Delta)}(M) = M$ ' si et seulement si (Δ) passe par le milieu de [MM'] et $(\Delta) \perp (MM')$
- La symétrie orthogonale inverse les angles orientés

M \vec{u}

4. La translation

Définition:

Soit \overline{u} un vecteur non nul.

La transformation qui a tout point M du plan, associe un unique point M' tel que $\overrightarrow{MM}' = \overrightarrow{u}$ est appelé: translation de vecteur \overrightarrow{u} . On note $t_{\overrightarrow{u}}$

StMAth

Remarque:

Il n'y a aucun point invariant par une translation de vecteur non nul.

Propriété:

Si $A'et\,B'$ sont les images respectives des points $A\,et\,B$ par une translation, alors le quadrilatère AA'B'B est un parallélogramme

B U

Propriété caractéristique de la translation:

Théorème:

Une transformation du plan T est une translation de vecteur \vec{u} si et seulement si pour tous les points M et N du plan on a: $\overline{M'N'} = \overline{MN'}$ avec T(M) = M' et T(N) = N'

5. Propriétés

Propriétés de conservation

Les symétries (centrale et axiale) et les translations conservent l'alignement, les mesures des angles, les longueurs et les aires.

Images de certaines figure par une transformation Théorème:

Soit T une symétrie centrale , symétrie axiale ou translations,

- L'image d'un segment par la transformation *T* est un segment de meme longueur
- L'image d'une droite par la transformation *T* est une droite
- L'image d'un cercle de centre Ω par la transformation T est un cercle de centre $T(\Omega)$ et de même rayon
- L'image d'un triangle par la transformation *T* est un triangle
- L'image d'un angle géométrique par la transformation *T* est un angle de meme mesure
- ullet Les image de deux droites parallèle par la transformation T sont deux droites parallèles
- Les image de deux droites perpendiculaires par la transformation T sont deux droites perpendiculaires

II. L'homothétie

Définition:

Soit *O* un point du plan et *k* un réel non nul

La transformation qui a tout point M du plan, associe un unique point M ' tel que \overrightarrow{OM} ' = $k\overrightarrow{OM}$ est appelé : l'homothétie de centre O et de rapport k . On note $h_{(O,k)}$

Remarque:

Le point O est le seule point invariant par l'homothétie de centre O et de rapport k Exemple:

$$h(O,2)$$
; $h(O,1)$; $h(O,-1)$; $h(O,-2)$

Propriétés:

- $h_{(O,k)}(M) = M'$ si et seulement si $\overrightarrow{OM'} = k\overrightarrow{OM}$
- Si $h_{(O,k)}(A) = A'$ et $h_{(O,k)}(B) = B'$ alors le quadrilatère AA'B'B est un trapèze
- Si k=1 alors, tous les points du plan sont invariants par l'homothétie $h_{(o,k)}$
- Si $k \neq 1$ alors, Le point O est le seule point invariant par l'homothétie $h_{(O,k)}$
- Si k = -1 alors, l'homothétie $h_{(O,-1)}$ n'est que la symétrie centrale de centre O
- Si $h_{(O,k)}(M) = N$ alors $h_{(O,\frac{1}{k})}(N) = M$

Remarque:

- o L'homothétie est une transformation qui agrandi les figures si k > 1 et qui les réduit si k < 1
- o L'homothétie ne conserve ni les distances ni les aires

Propriété caractéristique de l'homothétie:

Théorème:

Une transformation du plan T est une homothétie h de centre O et de rapport k avec $k \ne 1$ si et seulement si pour tous les points M et N du plan on a: $\overline{M'N'} = k\overline{MN}$ avec T(M) = M' et T(N) = N'

III. Effets de l'homothétie

1- Distances, aires et volumes

Une homothétie de rapport k multiplie les distances par |k|, les aires par k^2 et les volumes par $|k|^3$.

2- Conservation de l'alignement

Si A, B et C sont trois points alignés, leurs images A', B' et C' par une homothétie sont aussi rois points alignés.

3- Conservation du parallélisme

Si d_1 et d_2 sont deux droites parallèles, leurs images d_1 ' et d_2 ' par une homothétie sont aussi des troites parallèles.

4- Conservation des angles orientés

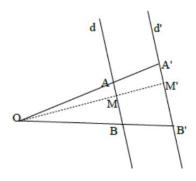
Dans le plan orienté, si A, B et C sont trois points distincts deux à deux, et si A', B' et C' sont leurs images respectives par une homothétie, alors

En particulier, les homothéties conservent les angles droits, donc l'orthogonalité.

IV. Images de certaines figures géométriques par une homothétie

1- Image d'une droite

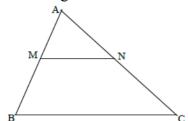
Une homothétie transforme une droite d en une droite d' parallèle à d. Si a droite d passe par le centre de l'homothétie, alors d' = d.

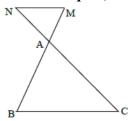


1- Triangles homothétiques

Soit ABC un triangle, M un point de (AB) et N un point de (AC). Si (MN) est parallèle à (BC), alors l'homothétie de centre A qui transforme B en M ransforme aussi C en N.

Les triangles AMN et ABC sont dits homothétiques, ils sont dans la configuration de Thalès





2- Image d'un cercle

Une homothétie h de rapport k transforme un cercle de centre I et de rayon R en un cercle de centre I' et de rayon R' avec I' = h(I) et R' = |k| R.

Année scolaire: 2019/2020